Free Access
Issue
ESAIM: COCV
Volume 25, 2019
Article Number 72
Number of page(s) 24
DOI https://doi.org/10.1051/cocv/2018053
Published online 27 November 2019
  1. N. Aronszajn, Theory of reproducing kernels. Trans. Am. Math. Soc. 68 (1950) 337–404. [Google Scholar]
  2. M. Bauer, M. Bruveris, N. Charon and J. Møller-Andersen, Varifold-Based Matching of Curves via Sobolev-Type Riemannian Metrics. In 6th MICCAI Workshop on Mathematical Foundations of Computational Anatomy (2017) 152–163. [Google Scholar]
  3. M. Bauer, M. Bruveris, P. Harms and P.W. Michor, Vanishing geodesic distance for the Riemannian metric with geodesic equation the KdV-equation. Ann. Global Anal. Geom. 41 (2012) 461–472. [CrossRef] [Google Scholar]
  4. M. Bauer, M. Bruveris, P. Harms and J. Møller-Andersen, Curve Matching with Applications in Medical Imaging. In 5th MICCAI Workshop on Mathematical Foundations of Computational Anatomy (2015). [Google Scholar]
  5. M. Bauer, M. Bruveris, P. Harms and J. Møller-Andersen, A numerical framework for Sobolev metrics on the space of curves. SIAM J. Imaging Sci. 10 (2017) 47–73. [Google Scholar]
  6. M. Bauer, M. Bruveris, S. Marsland and P.W. Michor, Constructing reparameterization invariant metrics on spaces of plane curves. Differ. Geom. Appl. 34 (2014) 139–165. [Google Scholar]
  7. M. Bauer, M. Bruveris and P.W. Michor, Overview of the geometries of shape spaces and diffeomorphism groups. J. Math. Imaging Vis. 50 (2014) 60–97. [Google Scholar]
  8. M. Bauer, M. Bruveris and P.W. Michor, Why use Sobolev metrics on the space of curves, in Riemannian Computing in Computer Vision. Springer, Cham (2016) 233–255. [CrossRef] [Google Scholar]
  9. M. Bauer, M. Eslitzbichler and M. Grasmair, Landmark-guided elastic shape analysis of human character motions. Inverse Probl. Imaging 11 (2017) 601–621. [CrossRef] [Google Scholar]
  10. M. Bauer and P. Harms, Metrics on spaces of immersions where horizontality equals normality. Differ. Geom. Appl. 39 (2015) 166–183. [Google Scholar]
  11. M.F. Beg, M.I. Miller, A. Trouvé and L. Younes, Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61 (2005) 139–157. [Google Scholar]
  12. J. Benn, S. Marsland, R. McLachlan, K. Modin and O. Verdier, Currents and finite elements as tools for shapespace (2017). Preprint arXiv:1702.02780. [Google Scholar]
  13. M. Bruveris, Completeness properties of Sobolev metrics on the space of curves. J. Geom. Mech. 7 (2015) 125–150. [Google Scholar]
  14. M. Bruveris, Regularity of maps between Sobolev spaces. Ann. Global Anal. Geom. 52 (2017) 11–24. [CrossRef] [Google Scholar]
  15. M. Bruveris, P.W. Michor and D. Mumford, Geodesic completeness for Sobolev metrics on the space of immersed plane curves. Forum Math. Sigma 2 (2014) e19. [CrossRef] [Google Scholar]
  16. M. Bruveris and J. Møller-Andersen, Completeness of length-weighted Sobolev metrics on the space ofcurves (2017). Preprint arXiv:1705.07976. [Google Scholar]
  17. C. Carmeli, E. De Vito, A. Toigo and V. Umanita, Vector valued reproducing kernel Hilbert spaces and universality. Anal. Appl. 8 (2010) 19–61. [CrossRef] [Google Scholar]
  18. V. Cervera, F. Mascaró and P.W. Michor, The action of the diffeomorphism group on the space of immersions. Differ. Geom. Appl. 1 (1991) 391–401. [Google Scholar]
  19. B. Charlier, N. Charon and A. Trouvé, Fshapes tool kit, 2014. Available at https://github.com/fshapes/fshapesTk (2019). [Google Scholar]
  20. N. Charon, Analysis of geometric and functional shapes with extensions of currents: application to registration and atlas estimation. PhD thesis, ENS Cachan (2013). [Google Scholar]
  21. N. Charon and A. Trouvé, The varifold representation of non-oriented shapes for diffeomorphic registration. SIAM J. Imaging Sci. 6 (2013) 2547–2580. [Google Scholar]
  22. S. Durrleman, P. Fillard, X. Pennec, A. Trouvé and N. Ayache, Registration, atlas estimation and variability analysis of white matter fiber bundles modeled as currents. NeuroImage 55 (2010) 1073–1090. [CrossRef] [PubMed] [Google Scholar]
  23. D.G. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92 (1970) 102–163. [Google Scholar]
  24. M. Eslitzbichler, Modelling character motions on infinite-dimensional manifolds. Vis. Comput. 31 (2015) 1179–1190. [Google Scholar]
  25. J. Glaunès, A. Qiu, M. Miller and L. Younes, Large deformation diffeomorphic metric curve mapping. Int. J. Comput. Vis. 80 (2008) 317–336. [PubMed] [Google Scholar]
  26. J. Glaunès, A. Trouvé and L. Younes, Diffeomorphic matching of distributions: a new approach for unlabelled point-sets and sub-manifolds matching. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2 (2004) 712–718. [Google Scholar]
  27. J. Glaunès and M. Vaillant, Surface matching via currents. Proc. Inform. Process. Med. Imaging (IPMI). In Vol. 3565 of Lect. Notes Comput. Sci. 3565 (2006) 381–392. [Google Scholar]
  28. U. Grenander, General Pattern Theory: A Mathematical Study of Regular Structures. Oxford Mathematical Monographs. Clarendon Press, Oxford (1993). [Google Scholar]
  29. I. Kaltenmark, B. Charlier and N. Charon, A general framework for curve and surface comparison and registration with oriented varifolds. IEEE Conf. Comput. Vis. Pattern Recognit. (2017) 4580–4589. [Google Scholar]
  30. E. Klassen, A. Srivastava, W. Mio and S.H. Joshi, Analysis of planar shapes using geodesic paths on shape spaces. IEEE Trans. Pattern Anal. Mach. Intell. 26 (2004) 372–383. [CrossRef] [PubMed] [Google Scholar]
  31. A. Kriegl and P.W. Michor, The Convenient Setting of Global Analysis. Vol. 53 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (1997). [CrossRef] [Google Scholar]
  32. S. Kurtek and T. Needham, Simplifying transforms for general elastic metrics on the space of planecurves (2018). Preprint arXiv:1803.10894. [Google Scholar]
  33. H. Laga, S. Kurtek, A. Srivastava and S.J. Miklavcic, Landmark-free statistical analysis of the shape of plant leaves. J. Theor. Biol. 363 (2014) 41–52. [CrossRef] [PubMed] [Google Scholar]
  34. A.C. Mennucci, A. Yezzi and G. Sundaramoorthi, Properties of Sobolev-type metrics in the space of curves. Interface. Free Bound. 10 (2008) 423–445. [CrossRef] [Google Scholar]
  35. P.W. Michor and D. Mumford, Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. 8 (2006) 1–48. [CrossRef] [Google Scholar]
  36. P.W. Michor and D. Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Appl. Comput. Harmon. Anal. 23 (2007) 74–113. [Google Scholar]
  37. W. Mio, J.C. Bowers and X. Liu, Shape of elastic strings in euclidean space. Int. J. Comput. Vis. 82 (2009) 96–112. [Google Scholar]
  38. W. Mio and A. Srivastava, Elastic-String Models for Representation and Analysis of Planar Shapes. Vol. 2 of Proceedings ofthe 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR (2004) II-10–II-15. [CrossRef] [Google Scholar]
  39. W. Mio, A. Srivastava and S. Joshi, On shape of plane elastic curves. Int. J. Comput. Vis. 73 (2007) 307–324. [Google Scholar]
  40. G. Nardi, G. Peyré and F.-X. Vialard, Geodesics on shape spaces with bounded variation and Sobolev metrics. SIAM J. Imaging Sci. 9 (2016) 238–274. [Google Scholar]
  41. J. Nocedal and S. Wright, Numerical Optimization. Springer, New York (2006). [Google Scholar]
  42. M. Overton, HANSO: hybrid algorithm for non-smooth optimization 2.2, 2016. Available at https://cs.nyu.edu/overton/software/hanso/ (2019). [Google Scholar]
  43. J. Shah, H0-type Riemannian metrics on the space of planar curves. Quart. Appl. Math. 66 (2008) 123–137. [CrossRef] [Google Scholar]
  44. B. Sriperumbudur, K. Fukumizu and G. Lanckriet, On the Relation Between Universality, Characteristic Kernels and RKHS Embedding of Measures. Vol. 9 of Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (2010) 773–780. [Google Scholar]
  45. A. Srivastava and E. Klassen, Functional and Shape Data Analysis. Springer Series in Statistics. Springer-Verlag, New York (2016). [CrossRef] [Google Scholar]
  46. A. Srivastava, E. Klassen, S.H. Joshi and I.H. Jermyn, Shape analysis of elastic curves in Euclidean spaces. IEEE Trans. Pattern Anal. Mach. Intell. 33 (2011) 1415–1428. [CrossRef] [PubMed] [Google Scholar]
  47. J. Su, S. Kurtek, E. Klassen and A. Srivastava, Statistical analysis of trajectories on Riemannian manifolds: bird migration, hurricane tracking and video surveillance. Ann. Appl. Stat. 8 (2014) 530–552. [Google Scholar]
  48. J. Su, A. Srivastava, F.D.M. de Souza and S. Sarkar, Rate-invariant analysis of trajectories on Riemannian manifolds with application in visual speech recognition. IEEE Conf. Comput. Vis. Pattern Recognit. 6 (2014) 620–627. [Google Scholar]
  49. Z. Su, E. Klassen and M. Bauer, The square root velocity framework for curves in a homogeneous space. In Proceedingsof 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. 07 (2017) 680–689. [CrossRef] [Google Scholar]
  50. L. Younes, Hybrid Riemannian metrics for diffeomorphic shape registration. Ann. Math. Sci. Appl. 3 (2018) 189–210. [Google Scholar]
  51. L. Younes, Computable elastic distances between shapes. SIAM J. Appl. Math. 58 (1998) 565–586. [Google Scholar]
  52. L. Younes, P.W. Michor, J. Shah and D. Mumford, A metric on shape space with explicit geodesics. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 19 (2008) 25–57. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.