Free Access
Volume 26, 2020
Article Number 8
Number of page(s) 24
Published online 11 February 2020
  1. C.D. Benchimol, A note on weak stabilizability of contraction semigroups. SIAM J. Control Optim. 16 (1978) 373–379 [Google Scholar]
  2. Y. Cao and X.B. Chen, A survey of modeling and control Issues for piezo-electric actuators. J. Dyn. Syst. Meas. Cont. 137 (2014) 014001 [CrossRef] [Google Scholar]
  3. C.Y.K. Chee, L. Tong and G.P. Steven, A review on the modelling of piezo-electric sensors and actuators incorporated in intelligent structures. J. Intell. Mater. Syst. Struct. 9 (1998) 3–19 [Google Scholar]
  4. G. Chen, A note on the boundary stabilization of the wave equation. SIAM J. Control Optim. 19 (1981) 106–113 [Google Scholar]
  5. R. Comstock, Charge control of piezo-electric actuators to reduce hysteresis effects. United States Patent # 4, 263, 527, Assignee: The Charles Stark Draper Labrotary (1981) [Google Scholar]
  6. R.F. Curtain and H.J. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory. Springer, Berlin (1995) [CrossRef] [Google Scholar]
  7. R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 1 of Physical Origins and Classical Methods. Springer, Berlin (1988) [Google Scholar]
  8. Ph. Destuynder, I. Legrain, L. Castel and N. Richard, Theoretical, numerical and experimental discussion of the use of piezo-electric devices for control–structure interaction. Eur. J. Mech. A Solids 11 (1992) 181–213 [Google Scholar]
  9. G. Duvaut and J.L. Lions, Inequalities in Mechanics and Physics. Springer, Berlin (1976) [CrossRef] [Google Scholar]
  10. A.C. Eringen and G.A. Maugin, Electrodynamics of Continua I. Foundations and Solid Media. Springer-Verlag, New York (1990) [CrossRef] [Google Scholar]
  11. A.J. Fleming and S.O.R. Moheimani, Precision current and charge amplifiers for driving highly capacitive piezo-electric loads. Electr. Lett. 39 (2003) 282–284 [CrossRef] [Google Scholar]
  12. Fur K. Furutani, M. Urushibata and N. Mohri, Displacement control of piezo-electric element by feedback of induced charge. Nanotechnology 9 (1998) 93–98 [Google Scholar]
  13. K. Ghandi and N.W. Hagood, A hybrid finite element model for phase transitions in nonlinear electro-mechanically coupled material. Proc. SPIE 3039 (1997) 97–112 [CrossRef] [Google Scholar]
  14. J.S. Gibson, A note on stabilization of infinite-dimensional linear oscillators by compact linear feedback. SIAM J. Control Optim. 18 (1980) 311–316 [Google Scholar]
  15. R.B. Gorbet, K.A. Morris and D.W.L. Wang, Passivity-based stability and control of hysteresis in smart actuators. IEEE Trans. Cont. Syst. Technol. 9 (2001) 5–16 [CrossRef] [Google Scholar]
  16. N.W. Hagood, W.H. Chung and A.V. Flotov, Modeling of piezo-electric actuator dynamics for active structural control. J. Intell. Mater. Syst. Struc. 1 (1990) 327–354 [CrossRef] [Google Scholar]
  17. S.W. Hansen, Analysis of a plate with a localized piezo-electric patch, in Proc. of Conference on Decision & Control, Tampa, Florida (1998) 2952–2957 [Google Scholar]
  18. J.E. Lagnese and J.-L. Lions, Modeling Analysis and Control of Thin Plates. Masson, Paris (1988) [Google Scholar]
  19. P.C.Y. Lee, A variational principle for the equations of piezo-electromagnetism in elastic dielectric crystals. J. Appl. Phys. 691 (1991) 7470–7473 [Google Scholar]
  20. J.A. Main, E. Garcia and D.V. Newton, Precision position control of piezo-electric actuators using charge feedback. J. Guid. Cont. Dyn. 18 (1995) 1068–1073 [CrossRef] [Google Scholar]
  21. J.A. Main and E. Garcia, Design impact of piezo-electric actuator nonlinearities. J. Guid. Cont. Dyn. 20 (1997) 327–332 [CrossRef] [Google Scholar]
  22. K.A. Morris and A.Ö. Özer, Modeling and stabilizability of voltage-actuated piezo-electric beams with magnetic effects. SIAM J. Control Optim. 52 (2014) 2371–2398 [Google Scholar]
  23. K.A. Morris and A.Ö. Özer, Comparison of stabilization of current-actuated and voltage-actuated piezo-electric beams, in 53rd Proc. of the IEEE Conf. on Decision & Control, Los Angeles, California, USA (2014) 571–576 [CrossRef] [Google Scholar]
  24. C. Newcomb and I. Flinn, Improving the linearity of piezo-electric ceramic actuators. Electr. Lett. 18 (1982) 442–443 [CrossRef] [Google Scholar]
  25. A.Ö. Özer, Further stabilization and exact observability results for voltage-actuated piezo-electric beams with magnetic effects. Math. Cont. Signals Syst. 27 (2015) 219–244 [CrossRef] [Google Scholar]
  26. A.Ö. Özer, Modeling and stabilization results for a charge or current-actuated active constrained layer (ACL) beam model with the electrostatic assumption, in Proc. SPIE 9799 Active and Passive Smart Structures and Integrated Systems, Las Vegas, Nevada, USA (2016) 9799F [Google Scholar]
  27. A.Ö. Özer, Modeling and controlling an active constrained layered (ACL) beam actuated by two voltage sources with/without magnetic effects. IEEE Trans. Autom. Cont. 62 (2017) 6445–6450 [CrossRef] [Google Scholar]
  28. A.Ö. Özer, Potential formulation for charge or current-controlled piezoelectric smart composites and stabilization results: electrostatic vs. quasi-static vs. fully-dynamic approaches. IEEE Trans. Autom. Cont. 64(3) (2018) 989–1002 [Google Scholar]
  29. A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York (1983) [CrossRef] [Google Scholar]
  30. A.J.A Ramos, C.S.L. Gonçalves and S.S.C. Neto, Exponential stability and numerical treatment for piezoelectric beams with magnetic effect. ESAIM: M2AN 52 (2018) 255–274 [CrossRef] [EDP Sciences] [Google Scholar]
  31. N. Rogacheva, The Theory of Piezoelectric Shells and Plates. CRC Press, Boca Raton, FL (1994) [Google Scholar]
  32. S.J. Rupitsch, Piezoelectric Sensors and Actuators. Springer, Berlin (2018) [Google Scholar]
  33. R.C. Smith, Smart Material Systems. Society for Industrial and Applied Mathematics, PA (2005) [CrossRef] [Google Scholar]
  34. R.C. Smith, C. Bouton and R. Zrostlik, Partial and full inverse compensation for hysteresis in smart material systems, in Proc. American Control Conference (2000) 2750–2754 [Google Scholar]
  35. R. Stanway, J.A. Rongong and N.D. Sims, Active constrained-layer damping: a state-of-the-art review. Autom. Cont. Syst. 217 (2003) 437–456 [Google Scholar]
  36. H.F. Tiersten, Linear Piezoelectric Plate Vibrations. Plenum Press, N ew York (1969) [Google Scholar]
  37. S. Tumanski, Induction coil sensors – a review. Meas. Sci. Technol. 18 (2007) R31–R46 [Google Scholar]
  38. H.S. Tzou, Piezoelectric shells, Solid Mechanics and Its applications 19. Kluwer Academic, The Netherlands (1993) [CrossRef] [Google Scholar]
  39. J. Yang, A review of a few topics in piezo-electricity. Appl. Mech. Rev. 59 (2006) 335–345 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.