Free Access
Issue
ESAIM: COCV
Volume 26, 2020
Article Number 27
Number of page(s) 43
DOI https://doi.org/10.1051/cocv/2019043
Published online 06 March 2020
  1. G.W. Anderson, A. Guionnet and O. Zeitouni, An introduction to random matrices. Vol. 118 of Cambridge studies in advanced mathematics (2010). [Google Scholar]
  2. V.I. Bogachev, Measure theory. In Vol. 1. Springer Science & Business Media (2007). [CrossRef] [Google Scholar]
  3. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer Science & Business Media, New York (2010). [CrossRef] [Google Scholar]
  4. L.A. Caffarelli, S. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math. 171 (2008) 425–461. [Google Scholar]
  5. T. Carleman, Über die Abelsche Integralgleichung mit konstanten Integrationsgrenzen. Math. Zeitschr. 15 (1922) 111–120. [CrossRef] [Google Scholar]
  6. Y.-S. Chan, A.C. Fannjiang and G.H. Paulino, Integral equations with hypersingular kernels—theory and applications to fracture mechanics. Int. J. Eng. Sci. 41 (2003) 683–720. [Google Scholar]
  7. P. Deift, T. Kriecherbauer and KT.-R. McLaughlin, New results on the equilibrium measure for logarithmic potentials in the presence of an external field. J. Approx. Theory 95 (1998) 388–475. [Google Scholar]
  8. A. Erdélyi and H. Bateman, Tables of Integral Transforms: Based in Part on Notes Left by Harry Bateman and Compiled by the Staff of the Bateman Manuscript Project. McGraw-Hill (1954). [Google Scholar]
  9. R. Estrada and R.P. Kanwal, Singular Integral Equations. Springer Science & Business Media, New York (2000). [CrossRef] [Google Scholar]
  10. K. Falconer, Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons, West Sussex (2003). [CrossRef] [Google Scholar]
  11. P.J. Forrester, Log-Gases and Random Matrices (LMS-34). Princeton University Press (2010). [CrossRef] [Google Scholar]
  12. A. Garroni, P. van Meurs, M.A. Peletier and L. Scardia, Boundary-layer analysis of a pile-up of walls of edge dislocations at a lock. Math. Models Methods Appl. Sci. 26 (2016) 2735–2768. [Google Scholar]
  13. M.G.D. Geers, R.H.J. Peerlings, M.A. Peletier and L. Scardia, Asymptotic behaviour of a pile-up of infinite walls of edge dislocations. Arch. Ratl. Mech. Anal. 209 (2013) 495–539. [CrossRef] [Google Scholar]
  14. I. Gohberg and N. Krupnik, One-dimensional linear singular integral operators. In Vol. I. Birkhäuser Verlag, Basel (1992). [Google Scholar]
  15. I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, Seventh Edition. Academic Press, Burlington, Massachusetts (2007). [Google Scholar]
  16. L. Grafakos, Classical and Modern Fourier Analysis. Prentice Hall Upper Saddle River, N.J. (2004). [Google Scholar]
  17. C.L. Hall, S.J. Chapman and J.R. Ockendon, Asymptotic analysis of a system of algebraic equations arising in dislocation theory. SIAM J. Appl. Math. 70 (2010) 2729–2749. [Google Scholar]
  18. A.K. Head and N. Louat, The distribution of dislocations in linear arrays. Aust. J. Phys. 8 (1955) 1–7. [CrossRef] [Google Scholar]
  19. C.S. Kahane, The solution of mildly singular integral equation of the first kind on a disk. Integr. Equ. Oper. Theory 4 (1981) 548–595. [CrossRef] [Google Scholar]
  20. D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications. Academic Press, NY, London (1980). [Google Scholar]
  21. F.W. King, Hilbert Transforms. In Vol. I. Cambridge University Press, Cambridge (2009). [Google Scholar]
  22. F.W. King, Hilbert Transforms. In Vol. II. Cambridge University Press, Cambridge (2009). [Google Scholar]
  23. A.B.J. Kuijlaars and K.T.-R. McLaughlin, Generic behavior of the density of states in random matrix theory and equilibrium problems in the presence of real analytic external fields. Commun. Pure Appl. Math. 53 (2000) 736–785. [Google Scholar]
  24. T.B. Laurent, D. Balagué, J.A. Carrillo and G. Raoul, Dimensionality of local minimizers of the interactionenergy (2014). [Google Scholar]
  25. I.K. Lifanov, L.N. Poltavskii and M.M. Vainikko, Vol. 4 of Hypersingular Integral Equations and Their Applications. CRC Press, Boca Raton, Florida (2003). [CrossRef] [Google Scholar]
  26. K.W. Mangler, Improper Integrals in Theoretical Aerodynamics. Royal Aircraft Establishment, London (1951). [Google Scholar]
  27. M.L. Mehta, Random Matrices. In Vol. 142. Third Edition. Elsevier/ Press (2004). [Google Scholar]
  28. H.N. Mhaskar and E.B. Saff, Where does the sup norm of a weighted polynomial live? Constr. Approx. 1 (1985) 71–91. [Google Scholar]
  29. M.G. Mora, L. Rondi and L. Scardia, The equilibrium measure for a nonlocal dislocation energy. Commun. Pure Appl. Math. 72 (2019) 136–158. [Google Scholar]
  30. N.I. Muskhelishvili, Singular Integral Equations: Boundary Problems of Functions Theory and Their Application to Mathematical Physics. P. Noordhoff, Groningen (1953). [Google Scholar]
  31. I. Richards and H. Youn, Theory of Distributions: a non-technical introduction. Cambridge University Press, New York (2007). [Google Scholar]
  32. E.B. Saff and V. Totik, Logarithmic Potentials with External Fields. Springer Verlag, Berlin, Heidelberg (1997). [CrossRef] [Google Scholar]
  33. S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Singapore (1993). [Google Scholar]
  34. E. Sandier and S. Serfaty, 1D log gases and the renormalized energy: crystallization at vanishing temperature. Prob. Theory Related Fields 162 (2015) 795–846. [CrossRef] [Google Scholar]
  35. L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60 (2007) 67–112. [Google Scholar]
  36. R. Simione, D. Slepčev and I. Topaloglu, Existence of ground states of nonlocal-interaction energies. J. Stat. Phys. 159 (2015) 972–986. [Google Scholar]
  37. P. van Meurs, Discrete-to-Continuum Limits of Interacting Dislocations. Ph.D. thesis, Eindhoven University of Technology (2015). [Google Scholar]
  38. H. Widom, Singular integral equations in Lp. Trans. Am. Math. Soc. (1960) 131–160. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.