Free Access
Issue
ESAIM: COCV
Volume 26, 2020
Article Number 43
Number of page(s) 26
DOI https://doi.org/10.1051/cocv/2019027
Published online 17 July 2020
  1. A. Armaou and P.D. Christofides, Feedback control of the Kuramoto-Sivashinsky equation. Physica D 137 (2000) 49–61. [Google Scholar]
  2. J.L. Bona, S. Sun and B.-Y. Zhang, A non-homogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane. Trans. Am. Math. Soc. 354 (2001) 427–490. [Google Scholar]
  3. J.L. Bona, S. Sun and B.-Y. Zhang, A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain. Commun. Partial Differ. Equ. 28 (2003) 1391–1436. [CrossRef] [Google Scholar]
  4. J.L. Bona, S. Sun and B.-Y. Zhang, A non-homogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain II. J. Differ. Equ. 247 (2009) 2558–2596. [Google Scholar]
  5. E. Cerpa, P. Guzmán and A. Mercado, On the control of the linear Kuramoto-Sivashinsky equation. ESAIM: COCV 23 (2017) 165–194. [CrossRef] [EDP Sciences] [Google Scholar]
  6. E. Cerpa and A. Mercado, Local exact controllability to the trajectories of the 1-D Kuramoto-Sivashinsky equation. J. Differ. Equ. 250 (2011) 2024–2044. [Google Scholar]
  7. P. Collet, J.-P. Eckmann, H. Epstein and J. Stubbe, A global attracting set for the Kuramoto-Sivashinsky equation. Commun. Math. Phys. 152 (1993) 203–214. [CrossRef] [Google Scholar]
  8. A.T. Cousin and N.A. Larkin, Kuramoto-Sivashinsky equation in domains with moving boundaries. Port. Math. 59 (2002) 335–349. [Google Scholar]
  9. A. Demirkaya, The existence of a global attractor for a Kuramoto-Sivashinsky type equation in 2D. Discrete Contin. Dyn. Syst. (2009) 198–207. [Google Scholar]
  10. A. Esfahani, Sharp well-posedness of the Ostrovsky, Stepanyams and Tsimring equation. Math. Commun. 18 (2013) 323–335. [Google Scholar]
  11. L. Giacomelli and F. Otto, New bounds for the Kuramoto-Sivashinsky equation. Commun. Pure Appl. Math. 58 (2005) 297–318. [Google Scholar]
  12. J.S. Il’yashenko, Global Analysis of the Phase Portrait for the Kuramoto-Sivashinsky Equation. J. Dyn. Differ. Equ. 4 (1992) 585–615. [Google Scholar]
  13. Y. Kuramoto, On the formation of dissipative structures in reaction-diffusion systems. Prog. Theor. Phys. Suppl. 64 (1978) 346–367. [CrossRef] [Google Scholar]
  14. Y. Kuramoto, Instability and turbulence of wavefronts in reaction-diffusion systems. Prog. Theor. Phys. 63 (1980) 1885–1903. [CrossRef] [Google Scholar]
  15. J.L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Vol. II. Springer-Verlag, Berlin-Heidelberg-New York (1972). [Google Scholar]
  16. J. Li, B.-Y. Zhang and Z.X. Zhang, A nonhomogeneous boundary value problem for the Kuramoto-Sivashinsky equation in a quarterplane. Math. Meth. Appl. Sci. 40 (2017) 5619–5641. [CrossRef] [Google Scholar]
  17. L. Molinet, F. Ribaud and A. Youssfi, Ill-posedness issues for a class of parabolic equations. Proc. R. Soc. Edinburgh 132 (2002) 1407–1416. [CrossRef] [Google Scholar]
  18. B. Nicolaenko and B. Scheurer, Remarks on the Kuramoto-Sivashinsky equation. Physica D 12 (1984) 391–395. [Google Scholar]
  19. B. Nicolaenko, B. Scheurer and R. Temam, Some global dynamical properties of the Kuramoto-Sivashinsky equations: nonlinearstability and attractors. Physica D 16 (1985) 155–183. [Google Scholar]
  20. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, Vol. 44. Springer-Verlag, New York (1983). [CrossRef] [Google Scholar]
  21. D. Pilod, Sharp well-posedness results for the Kuramoto-Velarde equation. Commun. Pure Appl. Anal. 7 (2008) 867–881. [CrossRef] [Google Scholar]
  22. G.I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames–I. Derivation of basic equations. Acta Astronaut. 4 (1977) 1177–1206. [Google Scholar]
  23. G.I. Sivashinsky, On flame propagation under conditions of stoichiometry. SIAM J. Appl. Math. 39 (1980) 67–82. [Google Scholar]
  24. E. Tadmor, The well-posedness of the Kuramoto-Sivashinsky equation. SIAM J. Math. Anal. 17 (1986) 884–893. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.