Free Access
Volume 26, 2020
Article Number 4
Number of page(s) 20
Published online 27 January 2020
  1. F. Ancona and A. Bressan, Patchy vector fields and asymptotic stabilization. ESAIM: COCV 4 (1999) 445–471. [CrossRef] [EDP Sciences] [Google Scholar]
  2. F. Ancona and A. Bressan, Flow stability of patchy vector fields and robust feedback stabilization. SIAM J. Cont. Optim. 41 (2002) 1455–1476. [CrossRef] [Google Scholar]
  3. F. Ancona and A. Bressan, Nearly time optimal stabilizing patchy feedbacks. Ann. Inst. Henri Poincaré (C) Nonlinear Anal. 24 (2007) 279–310. [CrossRef] [Google Scholar]
  4. D. Anisi, J. Hamberg and X. Xiaoming, Nearly time optimal paths for a ground vehicle. J. Cont. Theory Appl. 1 (2003) 2–8. [CrossRef] [Google Scholar]
  5. J.-P. Aubin and A. Cellina, Differential inclusions: Set-valued maps and viability theory, in Vol. 264 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, New York, Inc. (1984). [CrossRef] [Google Scholar]
  6. L. Berkovitz, Optimal feedback controls. SIAM J. Cont. Optim. 27 (1989) 991–1006. [CrossRef] [MathSciNet] [Google Scholar]
  7. V. Boltyanskii, Sufficient conditions for optimality and the justification of the dynamic programming principle. SIAM J. Cont. Optim. 4 (1966) 326–361. [CrossRef] [MathSciNet] [Google Scholar]
  8. U. Boscain and B. Piccoli, Optimal syntheses for control systems on 2-D manifolds, in Vol. 43 of Mathématiques & Applications. Springer (2004). [Google Scholar]
  9. R. Brockett, Asymptotic stability and feedback stabilization, in Differential Geometric Control Theory. Birkhäuser Boston (1983) 181–191. [Google Scholar]
  10. P. Brunovskỳ, Every normal linear system has a regular time optimal synthesis. Math. Slov. 28 (1978) 81–100. [Google Scholar]
  11. P. Brunovskỳ, Existence of regular synthesis for general control problems. J. Differ. Equ. 38 (1980) 317–343. [Google Scholar]
  12. I. Capuzzo-Dolcetta and P.-L. Lions, Hamilton-Jacobi equations with state constraints. Trans. Am. Math. Soc. 318 (1990) 643–683. [Google Scholar]
  13. P. Cardaliaguet, M. Quincampoix and P. Saint-Pierre, Optimal times for constrained nonlinear control problems without local controllability. Appl. Math. Optim. 36 (1997) 21–42. [Google Scholar]
  14. F. Clarke, Discontinuous feedback and nonlinear systems, in 8th IFAC Symposium on Nonlinear Control Systems (2010). [Google Scholar]
  15. F. Clarke, Functional analysis, calculus of variations and optimal control, in Vol. 264 of Graduate Text in Mathematics. Springer (2013). [CrossRef] [Google Scholar]
  16. F.H. Clarke, L. Rifford and R. Stern, Feedback in state constrained optimal control. ESAIM: COCV 7 (2002) 97–133. [CrossRef] [EDP Sciences] [Google Scholar]
  17. T. Faulwasser, M. Korda, C. Jones and D. Bonvin, On turnpike and dissipativity properties of continuous-time optimal control problems. Automatica 81 (2017) 297–304. [CrossRef] [Google Scholar]
  18. O. Hájek, Terminal manifolds and switching locus. Math. Syst. Theory 6 (1972) 289–301. [CrossRef] [Google Scholar]
  19. C. Hermosilla, Stratified discontinuous differential equations and sufficient conditions for robustness. Discr. Continu. Dyn. Syst. A 35 (2015) 4415–4437. [CrossRef] [Google Scholar]
  20. C. Hermosilla and H. Zidani, Infinite horizon problems on stratifiable state constraints sets. J. Differ. Equ. 258 (2015) 1430–1460. [Google Scholar]
  21. C. Hermosilla, P. Wolenski and H. Zidani, The Mayer and Minimum time problems with stratified state constraints. Set-Valued Variat. Anal. 26 (2018) 643–662. [CrossRef] [Google Scholar]
  22. H. Ishii and S. Koike, On ε-optimal controls for state constraint problems. Ann. Inst. Henri Poincaré (C) Non Linear Anal. 17 (2000) 473–502. [CrossRef] [Google Scholar]
  23. J.M. Lee, Introduction to smooth manifolds, in Vol. 218 of Graduate Text in Mathematics. Springer (2013). [Google Scholar]
  24. K. Mall and M.J. Grant, Epsilon-trig regularization method for bang-bang optimal control problems. J. Optim. Theory Appl. 174 (2017) 500–517. [Google Scholar]
  25. A. Marigo and B. Piccoli, Regular syntheses and solutions to discontinuous ODEs. ESAIM: COCV 7 (2002) 291–307. [CrossRef] [EDP Sciences] [Google Scholar]
  26. A. Marigo and B. Piccoli, Safety controls and applications to the Dubins’ car. Nonlin. Differ. Equ. Appl. 11 (2004) 73–94. [CrossRef] [Google Scholar]
  27. L.D. Meeker, Local time optimal feedback control of strictly normal two-input linear systems. SIAM J. Cont. Optim. 27 (1989) 53–82. [CrossRef] [Google Scholar]
  28. B. Piccoli, Optimal syntheses for state constrained problems with application to optimization of Cancer therapies. Math. Control Related Fields 2 (2012) 383–398. [CrossRef] [Google Scholar]
  29. B. Piccoli and H.J. Sussmann, Regular synthesis and sufficiency conditions for optimality. SIAM J. Cont. Optim. 39 (2000) 359–410. [CrossRef] [MathSciNet] [Google Scholar]
  30. F.S. Priuli, State constrained patchy feedback stabilization. Math. Control Related Fields 5 (2015) 141–163. [CrossRef] [Google Scholar]
  31. L. Rifford, Semiconcave control-Lyapunov functions and stabilizing feedbacks. SIAM J. Cont. Optim. 41 (2002) 659–681. [CrossRef] [MathSciNet] [Google Scholar]
  32. L. Rifford, Stratified semiconcave control-Lyapunov functions and the stabilization problem. Ann. Inst. Henri Poincaré (C) Non Linear Anal. 22 (2005) 343–384. [CrossRef] [Google Scholar]
  33. L. Rifford, On the existence of local smooth repulsive stabilizing feedbacks in dimension three. J. Differ. Equ. 226 (2006) 429–500. [Google Scholar]
  34. R. Rockafellar, Convex analysis, in Vol. 28 of Princeton Mathematical Series. Princeton University Press (1970). [Google Scholar]
  35. J. Rowland and R. Vinter, Construction of optimal feedback controls. Syst. Cont. Lett. 16 (1991) 357–367. [CrossRef] [MathSciNet] [Google Scholar]
  36. C. Silva and E. Trélat, Smooth regularization of bang-bang optimal control problems. IEEE Trans. Autom. Cont. 55 (2010) 2488–2499. [CrossRef] [Google Scholar]
  37. H. Soner, Optimal control with state-space constraint I. SIAM J. Cont. Optim. 24 (1986) 552–561. [CrossRef] [MathSciNet] [Google Scholar]
  38. P. Spinelli and G.S. Rakotonirainy, Minimum Time Problem Synthesis. Syst. Cont. Lett. 10 (1988) 281–290. [CrossRef] [Google Scholar]
  39. H. Sussmann, Regular synthesis for time optimal control of single-input real analytic systems in the plane. SIAM J. Cont. Optim. 25 (1987) 1145–1162. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.