Free Access
Issue
ESAIM: COCV
Volume 26, 2020
Article Number 39
Number of page(s) 47
DOI https://doi.org/10.1051/cocv/2019022
Published online 25 June 2020
  1. L. Abatangelo and V. Felli, Sharp asymptotic estimates for eigenvalues of Aharonov-Bohm operators with varying poles. Calc. Var. Partial Differ. Equ. 54 (2015) 3857–3903. [Google Scholar]
  2. L. Abatangelo and V. Felli, On the leading term of the eigenvalue variation for Aharonov-Bohm operators with a moving pole. SIAM J. Math. Anal. 48 (2016) 2843–2868. [CrossRef] [Google Scholar]
  3. L. Abatangelo, V. Felli, L. Hillairet and C. Lena, Spectral stability under removal of small capacity sets and applications to Aharonov-Bohm operators. J. Spectr. Theory 9 (2019) 379–427. [CrossRef] [Google Scholar]
  4. L. Abatangelo, V. Felli and C. Léna, On Aharonov-Bohm operators with two colliding poles. Adv. Nonlin. Stud. 17 (2017) 283–296. [CrossRef] [Google Scholar]
  5. L. Abatangelo, V. Felli, B. Noris and M. Nys, Sharp boundary behavior of eigenvalues for Aharonov-Bohm operators with varying poles. J. Funct. Anal. 273 (2017) 2428–2487. [Google Scholar]
  6. V. Bonnaillie–Noël, B. Helffer and T. Hoffmann-Ostenhof, Aharonov–Bohm Hamiltonians, isospectrality and minimal partitions. J. Phys. A 42 (2009) 185203. [CrossRef] [Google Scholar]
  7. V. Bonnaillie-Noël, B. Noris, M. Nys and S. Terracini, Aharonov-Bohm operators with varying poles. Anal. Partial Differ. Equ. 7 (2014) 1365–1395. [Google Scholar]
  8. E. Colorado and I. Peral, Semilinear elliptic problems with mixed Dirichlet–Neumann boundary conditions. J. Funct. Anal. 199 (2003) 468–507. [Google Scholar]
  9. M.M. Fall, V. Felli, A. Ferrero and A. Niang, Asymptotic expansions and unique continuation at Dirichlet–Neumann boundary junctions for planar elliptic equations. Math. Eng. 1 (2018) 84–117. [CrossRef] [Google Scholar]
  10. V. Felli and A. Ferrero, Almgren-type monotonicity methods for the classification of behaviour at corners of solutions to semilinear elliptic equations. Proc. Roy. Soc. Edinburgh Sect. A 143 (2013) 957–1019. [CrossRef] [Google Scholar]
  11. V. Felli, A. Ferrero and S. Terracini, Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential. J. Eur. Math. Soc. 13 (2011) 119–174. [CrossRef] [Google Scholar]
  12. R.R. Gadyl’shin, Splitting of a multiple eigenvalue of the Dirichlet problem for the Laplace operator under singular perturbation of the boundary condition. (Russian) Mat. Zametki 52 (1992) 42–55; Translation in Math. Notes 52 (1993) 1020–1029. [Google Scholar]
  13. M. Kassmann and W.R. Madych, Difference quotients and elliptic mixed boundary value problems of second order. Indiana Univ. Math. J. 56 (2007) 1047–1082. [CrossRef] [Google Scholar]
  14. A. Laptev and T. Weidl, Hardy inequalities for magnetic Dirichlet forms. In Mathematical results in quantum mechanics (Prague, 1998). Vol. 108 of Oper. Theory Adv. Appl. Birkhäuser, Basel (1999) 299–305. [Google Scholar]
  15. C. Léna, Eigenvalues variations for Aharonov-Bohm operators. J. Math. Phys. 56 (2015) 011502. [Google Scholar]
  16. B. Noris and S. Terracini, Nodal sets of magnetic Schrödinger operators of Aharonov-Bohm type and energy minimizing partitions. Indiana Univ. Math. J. 59 (2010) 1361–1403. [CrossRef] [Google Scholar]
  17. B. Noris, M. Nys and S. Terracini, On the Aharonov–Bohm operators with varying poles: the boundary behavior of eigenvalues. Commun. Math. Phys. 339 (2015) 1101–1146. [CrossRef] [Google Scholar]
  18. M. Reed and B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis, 2nd edn. Academic Press, New York (1980). [Google Scholar]
  19. G. Savaré, Regularity and perturbation results for mixed second order elliptic problems. Comm. Partial Differ. Equ. 22 (1997) 869–899. [CrossRef] [Google Scholar]
  20. L. Tartar, An introduction to Sobolev spaces and interpolation spaces. Vol. 3 of Lecture Notes of the Unione Matematica Italiana. Springer/UMI, Berlin/Bologna (2007). [Google Scholar]
  21. G.N. Watson, A treatise on the theory of the Bessel functions. Cambridge University Press (1944). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.