Free Access
Volume 26, 2020
Article Number 10
Number of page(s) 33
Published online 14 February 2020
  1. N. Abatangelo and E. Valdinoci, A notion of nonlocal curvature. Numer. Funct. Anal. Optim. 35 (2014) 793–815. [Google Scholar]
  2. L. Ambrosio, G. De Philippis and L. Martinazzi, Gamma-convergence of nonlocal perimeter functionals. Manuscripta Math. 134 (2011) 377–403. [CrossRef] [Google Scholar]
  3. X. Cabré, M.M. Fall and T. Weth, Delaunay hypersurfaces with constant nonlocal mean curvature. J. Mathématiques Pures et Appliquées 110 (2018) 32–70. [CrossRef] [Google Scholar]
  4. X. Cabré, M.M. Fall, J. Solà-Morales and T. Weth, Curves and surfaces with constant nonlocal mean curvature: meeting Alexandrov and Delaunay. To appear in J. Reine Angew. Math. DOI: [Google Scholar]
  5. [ X. Cabré, M.M. Fall and T. Weth, Near-sphere lattices with constant nonlocal mean curvature. Math. Ann. 370 (2018) 1513–1569. [Google Scholar]
  6. L. Caffarelli, J.-M. Roquejoffre and O. Savin, Nonlocal minimal surfaces. Commun. Pure Appl. Math. 63 (2010) 1111–1144. [Google Scholar]
  7. L. Caffarelli and P.E. Souganidis, Convergence of nonlocal threshold dynamics approximations to front propagation. Arch. Ration. Mech. Anal. 195 (2010) 1–23. [Google Scholar]
  8. G. Ciraolo, A. Figalli, F. Maggi and M. Novaga, Rigidity and sharp stability estimates for hypersurfaces with constant and almost-constant nonlocal mean curvature. To appear in J. Reine Angew. Math. DOI: [Google Scholar]
  9. M. Crandall and P. Rabinowitz, Bifurcation, perturbation of simple eigenvalues, and linearized stability. Arch. Ration. Mech. Anal. (52) 2 (1973) 161–180. [CrossRef] [Google Scholar]
  10. M.G. Crandall and P.H. Rabinowitz, Bifurcation from simple eigenvalues. J. Funct. Anal. 8 (1971) 321–340. [Google Scholar]
  11. J. Dávila, M. del Pino and J. Wei, Nonlocal minimal Lawson cones. arXiv preprint arXiv:1303.0593. [Google Scholar]
  12. J. Dávila, M. del Pino and J. Wei, Nonlocal s-minimal surfaces and Lawson cones. J. Differ. Geometry 109 (2018) 111–175. [CrossRef] [Google Scholar]
  13. J. Dávila, M. del Pino, S. Dipierro and E. Valdinoci, Nonlocal delaunay surfaces. Nonlinear Anal. 137 (2016) 357–380. [CrossRef] [Google Scholar]
  14. Ch. Delaunay, Sur la surface de révolution dont la courbure moyenne est constante. J. Math. Pures Appl. 1ère. série 6 (1841) 309–315. [Google Scholar]
  15. M.M. Fall, Periodic patterns for a model involving short-range and long-range, [Google Scholar]
  16. M.M. Fall, Regularity estimates for nonlocal Schrödinger equations. arXiv:1711.02206. [Google Scholar]
  17. M.M. Fall, I.A. Minlend and T. Weth, Unbounded periodic solutions to Serrin’s overdetermined boundary value problem. Arch. Ration. Mech. Anal. 233 (2017) 737–759. [Google Scholar]
  18. A. Figalli, N. Fusco, F. Maggi, V. Millot and M. Morini, Isoperimetry and stability properties of balls with respect to nonlocal energies. Commun. Math. Phys. 336 (2015) 441–507. [CrossRef] [Google Scholar]
  19. I.S Gradshteyn and I.M Ryzhik, Table of intregrals, series and products; seventh edition (2014). [Google Scholar]
  20. W.P. Johnson, The Curious History of Faá di Bruno’s Formula. Am. Math. Monthly 109 (2002) 217–227. [Google Scholar]
  21. O. Savin, E. Valdinoci, Regularity of nonlocal minimal cones in dimension 2. Calc. Var. Partial Differ. Equ. 48 (2013) 33–39. [Google Scholar]
  22. F. Schlenk and P. Sicbaldi, Bifurcating extremal domains for the first eigenvalue of the Laplacian. Adv. Math. 229 (2012) 602–632. [CrossRef] [MathSciNet] [Google Scholar]
  23. P. Sicbaldi, New extremal domains for the first eigenvalue of the Laplacian in flat tori. Calc. Var. PDEs 37 (2010) 329–344. [CrossRef] [Google Scholar]
  24. L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm. Pure Appl. Math. 60 (2007) 67–112. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.