Free Access
Issue
ESAIM: COCV
Volume 26, 2020
Article Number 29
Number of page(s) 21
DOI https://doi.org/10.1051/cocv/2019012
Published online 24 March 2020
  1. G.V. Alekseev, Mixed boundary value problems for steady-state magnetohydrodynamic equations of viscous incompressible fluids. Comp. Math. Math. Phys. 56 (2016) 1426–1439. [CrossRef] [Google Scholar]
  2. H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. Function spaces, differential operators and nonlinear analysis. Teubner-Texte Math. (1993) 9–126. [Google Scholar]
  3. A. Borzì, E.-J. Park. M. Vallejos Lass, Multigrid optimization methods for the optimal control of convection diffusion problems with bilinear control. J. Optim. Theory Appl. 168 (2016) 510–533. [Google Scholar]
  4. E. Casas and K. Kunisch, Stabilization by space controls for a class of semilinear parabolic equations. SIAM J. Control Optim. 55 (2017) 512–532. [Google Scholar]
  5. F.W. Chaves-Silva and S. Guerrero, A uniform controllability for the Keller-Segel system. Asymptot. Anal. 92 (2015) 318–338. [Google Scholar]
  6. F.W. Chaves-Silva and S. Guerrero, A controllability result for a chemotaxis-fluid model. J. Diff. Equ. 262 (2017) 4863–4905. [CrossRef] [Google Scholar]
  7. T. Cieślak, P. Laurençot and C. Morales-Rodrigo, Global existence and convergence to steady states in a chemorepulsion system. Parabolic and Navier-Stokes equations. Part 1. Banach Center Publ., 81. Banach Center Publ., 81, Part 1, Polish Acad. Sci. Inst. Math., Warsaw. (2008) 105–117. [Google Scholar]
  8. A.L.A. De Araujo and P.M.D. De Magalhães, Existence of solutions and optimal control for a model of tissue invasion by solid tumours. J. Math. Anal. Appl. 421 (2015) 842–877. [Google Scholar]
  9. E. Feireisl and A. Novotný, Singular limits in thermodynamics of viscous fluids. Advances in Mathematical Fluid Mechanics. Birkhäuser Verlag, Basel (2009). [CrossRef] [Google Scholar]
  10. K.R. Fister and C.M. Mccarthy, Optimal control of a chemotaxis system. Quart. Appl. Math. 61 (2003) 193–211. [CrossRef] [Google Scholar]
  11. V. Karl and D. Wachsmuth, An augmented Lagrange method for elliptic state constrained optimal control problems. Comp. Optim. Appl. 69 (2018) 857–880. [CrossRef] [Google Scholar]
  12. E.F. Keller and L.A. Segel, Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26 (1970) 399–415. [CrossRef] [PubMed] [Google Scholar]
  13. B.T. Kien, A. Rösch and D. Wachsmuth, Pontyagin’s principle for optimal control problem governed by 3D Navier-Stokes equations. J. Optim. Theory Appl. 173 (2017) 30–55. [Google Scholar]
  14. A. Kröner and B. Vexler, A priori error estimates for elliptic optimal control problems with bilinear state equation. J. Comp. Appl. Mech. 230 (2009) 781–802. [Google Scholar]
  15. K. Kunisch, P. Trautmann and B. Vexler, Optimal control of the undamped linear wave equation with measure valued controls. SIAM J. Control Optim. 54 (2016) 1212–1244. [Google Scholar]
  16. J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). [Google Scholar]
  17. E. Mallea-Zepeda, E. Ortega-Torres and E.J. Villamizar-Roa, A boundary control problem for micropolar fluids. J. Optim. Theory Appl. 169 (2016) 349–69. [Google Scholar]
  18. L. Necas, Les méthodes directes en théorie des equations elliptiques. Editeurs Academia, Prague (1967). [Google Scholar]
  19. M.A. Rodríguez-Bellido, D.A. Rueda-Gómez and E.J. Villamizar-Roa, On a distributed control problem for a coupled chemotaxis-fluid model. Discrete Cotin. Dyn. Syst. B. 23 (2018) 557–517. [Google Scholar]
  20. D.A. Rueda-Gómez and E.J. Villamizar-Roa, On the Rayleigh-Bénard-Marangoni system and a related optimal control problem. Comp. Math. Appl. 74 (2017) 2969–2991. [CrossRef] [Google Scholar]
  21. S.-U. Ryu, Boundary control of chemotaxis reaction diffusion system. Honam Math. J. 30 (2008) 469–478. [CrossRef] [Google Scholar]
  22. S.-U. Ryu and A. Yagi, Optimal control of Keller-Segel equations. J. Math. Anal. Appl. 256 (2001) 45–66. [Google Scholar]
  23. J. Simon, Compact sets in the space Lp(0, T; B). Ann. Mat. Pura Appl. 146 (1987) 65–96. [CrossRef] [MathSciNet] [Google Scholar]
  24. T. Tachim Medjo Optimal control of the primitive equations of the ocean with state constraints. Nonlinear Anal. 73 (2010) 634–649. [CrossRef] [Google Scholar]
  25. Y. Tao, Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensivity. Discrete Cotin. Dyn. Syst. B. 18 (2013) 2705–2722. [Google Scholar]
  26. H. Triebel, Interpolation theory, function spaces, differential operators. VEB Deutscher Verlag de Wissenschaften, Berlin (1978). [Google Scholar]
  27. M. Vallejos and A. Borzì, Multigrid optimization methods for linear and bilinear elliptic optimal control problems. Computing 82 (2008) 31–52. [CrossRef] [MathSciNet] [Google Scholar]
  28. G. Wang, Optimal control of 3-dimensional Navier-Stokes equations with state constraints. SIAM J. Control Optim. 41 (2002) 583–606. [Google Scholar]
  29. J. Zhen and Y. Wang, Optimal control problem for Cahn-Hilliard equations with state constraints. J. Dyn. Control Syst. 21 (2015) 257–272. [Google Scholar]
  30. J. Zowe and S. Kurcyusz, Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5 (1979) 49–62. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.