Free Access
Issue
ESAIM: COCV
Volume 26, 2020
Article Number 1
Number of page(s) 15
DOI https://doi.org/10.1051/cocv/2019005
Published online 09 January 2020
  1. F.J. Almgren Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints. Mem. Am. Math. Soc. 4 (1976) viii+199. [Google Scholar]
  2. M. Cicalese, G. Paolo Leonardi and F. Maggi, Improved convergence theorems for bubble clusters I. The planar case. Indiana Univ. Math. J. 65 (2016) 1979–2050. [CrossRef] [Google Scholar]
  3. M. Colombo, N. Edelen and L. Spolaor, The singular set of minimal surfaces near polyhedral cones. Preprint arXiv:1709.09957 (2017). [Google Scholar]
  4. J. Foisy, M. Alfaro, J. Brock, N. Hodges and J. Zimba, The standard double soap bubble in R2 uniquely minimizes perimeter. Pacific J. Math. 159 (1993) 47–59. [CrossRef] [Google Scholar]
  5. T. Frankel, Manifolds with positive curvature. Pacific J. Math. 11 (1961) 165–174. [CrossRef] [Google Scholar]
  6. M. Hutchings, F. Morgan, M. Ritoré and A. Ros, Proof of the double bubble conjecture. Ann. Math. 155 (2002) 459–489. [Google Scholar]
  7. F. Maggi, Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to Geometric Measure Theory. Vol. 135 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2012). [Google Scholar]
  8. J.W. Milnor, Topology from the Differentiable Viewpoint. Princeton Landmarks in Mathematics. Based on notes by David W. Weaver, Revised reprint of the 1965 original. Princeton University Press, Princeton, NJ (1997). [Google Scholar]
  9. P. Petersen and F. Wilhelm, On Frankel’s theorem. Can. Math. Bull. 46 (2003) 130–139. [CrossRef] [Google Scholar]
  10. B.W. Reichardt, Proof of the double bubble conjecture in Rn. J. Geom. Anal. 18 (2008) 172–191. [Google Scholar]
  11. B.W. Reichardt, C. Heilmann, Y.Y. Lai and A. Spielman, Proof of the double bubble conjecture in R4 and certain higher dimensional cases. Pacific J. Math. 208 (2003) 347–366. [CrossRef] [Google Scholar]
  12. L. Simon, Lectures on Geometric Measure Theory Vol. 3 of Proceedings of the Centre for Mathematical Analysis. Australian National University, Centre for Mathematical Analysis, Canberra (1983). [Google Scholar]
  13. L. Simon, Cylindrical tangent cones and the singular set of minimal submanifolds. J. Differ. Geom. 38 (1993) 585–652. [CrossRef] [Google Scholar]
  14. J.E. Taylor, The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces. Ann. Math. 103 (1976) 489–539. [Google Scholar]
  15. B. White, Stratification of minimal surfaces, mean curvature flows, and harmonic maps. J. Reine Angew. Math. 488 (1997) 1–35. [Google Scholar]
  16. W. Wichiramala, Proof of the planar triple bubble conjecture. J. Reine Angew. Math. 567 (2004) 1–49. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.