Free Access
Issue
ESAIM: COCV
Volume 26, 2020
Article Number 26
Number of page(s) 25
DOI https://doi.org/10.1051/cocv/2019029
Published online 06 March 2020
  1. R. Albert and A.L. Barabási, Statistical mechanics of complex networks. Rev. Mod. Phys. 47 (2002) 47–97. [Google Scholar]
  2. R. Alicandro and M.S. Gelli, Local and non local continuum limits of Ising type energies for spin systems. SIAM J. Math. Anal. 48 (2016) 895–931. [CrossRef] [Google Scholar]
  3. R. Alicandro, A. Braides and M. Cicalese, Phase and anti-phase boundaries in binary discrete systems: a variational viewpoint. Netw. Heterog. Media 1 (2006) 85–107. [CrossRef] [Google Scholar]
  4. R. Alicandro, M. Cicalese and A. Gloria, Variational description of bulk energies for bounded and unbounded spin systems. Nonlinearity 21 (2008) 1881–1910. [Google Scholar]
  5. E.J. Balder, New fundamentals of Young measure convergence. Vol. 410 of Calculus of Variations and Differential Equations, edited by A. Ioffe, S. Reich and I. Shafrir. Chapman and Hall/CRC Research Notes in Mathematics (1999) 24–48. [Google Scholar]
  6. E.J. Balder, Lectures on Young measure theory and its applications in economics. Workshop on Measure Theory and Real Analysis (Grado, 1997). Rendiconti dell’Istituto di Matematica dell’Università di Trieste 31 (suppl. 1) (2000) 1–69. [Google Scholar]
  7. E.J. Balder, On ws-convergence of product measures. Math. Oper. Res. 26 (2001) 494–518. [CrossRef] [Google Scholar]
  8. J.M. Ball, A version of the fundamental theorem for Young measures, in PDEs and continuum models of phase transitions, in Vol. 344 of Lecture Notes in Physics (1989) 207–215. [CrossRef] [Google Scholar]
  9. J.C. Bellido and C. Mora-Corral, Lower semicontinuity and relaxation via Young measures for nonlocal variational problems and applications to peridynamics. SIAM J. Math. Anal. 50 (2018) 779–809. [CrossRef] [Google Scholar]
  10. I. Benjamini and O. Schramm, Recurrence of distributional limits of finite planar graphs. Electr. J. Probab. 6 (2001) 1–13. [Google Scholar]
  11. A.L. Bertozzi and Y. van Gennip, Γ-convergence of Ginzburg-Landau graph functionals. Adv. Differ. Equ. 17 (2012) 1115–1180. [Google Scholar]
  12. C. Borgs, J.T. Chayes, L. Lovász, V.T. Sós and K. Vesztergombi, Counting graph homomorphisms. Top. Discr. Math. Ser. Algor. Combin. 26 (2006) 315–371. [CrossRef] [Google Scholar]
  13. C. Borgs, J.T. Chayes, L. Lovász, V.T. Sós and K. Vesztergombi, Convergent sequences of dense graphs I. Subgraph frequencies, metric properties and testing. Adv. Math. 219 (2008) 1801–1851. [CrossRef] [Google Scholar]
  14. C. Borgs, J.T. Chayes and L. Lovász, Moments of two-variable functions and the uniqueness of graph limits. Geometr. Funct. Anal. 19 (2010) 1597–1619. [CrossRef] [Google Scholar]
  15. C. Borgs, J.T. Chayes, L. Lovász, V.T. Sós and K. Vesztergombi, Limits of randomly grown graph sequences. Eur. J. Combinat. 32 (2011) 985–999. [CrossRef] [Google Scholar]
  16. C. Borgs, J.T. Chayes, L. Lovász, V.T. Sós and K. Vesztergombi, Convergent sequences of dense graphs II. Multiway cuts and statistical physics. Ann. Math. 176 (2012) 151–219. [Google Scholar]
  17. J. Boulanger, P. Elbau, C. Pontow and O. Scherzer, Non-Local functionals for imaging, in Fixed-Point Algorithms for Inverse Problemsin Science and Engineering, edited by H.H. Bauschke, R.S. Burachik, P.L. Combettes, V. Elser, D.R. Luke and H. Wolkowicz. Springer, New York (2011). [Google Scholar]
  18. A. Braides, Γ-convergence for beginners, Oxford University Press, Oxford (2002). [CrossRef] [Google Scholar]
  19. A. Braides, A handbook of Γ-convergence, Vol. 3 of Handbook of Differential Equations: Stationary Partial Differential Equations (2006) 101–213. [CrossRef] [Google Scholar]
  20. A. Braides, A. Causin, and M. Solci, Asymptotic analysis of a ferromagnetic Ising system with “diffuse” interfacial energy. Ann. Matemat. Pura Appl. 197 (2018) 583–604. [CrossRef] [Google Scholar]
  21. A. Braides and M.S. Gelli, From discrete to continuous variational problems: an introduction, in Topics in concentration phenomena and problem with multiple scales, edited by A. Braides and V. Chiadó Piat. Springer (2006). [CrossRef] [Google Scholar]
  22. A. Braides and M.S. Gelli, Continuum limits of discrete systems without convexity hypothesis. Math. Mech. Solids 7 (2002) 41–66. [Google Scholar]
  23. P. Elbau, Sequential Lower Semi-Continuity of Non-Local Functionals. Preprint arXiv:1104.2686 [math.FA] (2011). [Google Scholar]
  24. A. Frieze and R. Kannan, Quick approximation to matrices and applications. Combinatorica 19 (1999) 175–220. [CrossRef] [Google Scholar]
  25. M.R. Garey, D.S. Johnson and L.J. Stockmeyer, Some simplified NP-complete graph problems. Theor. Comput. Sci. 1 (1976) 237–267. [Google Scholar]
  26. S. Janson, Graphons, cut norm and distance, couplings and rearrangements. Vol. 4 of New York J. Math. Monogr. (2013). [Google Scholar]
  27. L. Lovász, Vol. 60 of Large networks and graph limits. American Mathematical Society Colloquium Publications (2012). [Google Scholar]
  28. L. Lovász and B. Szegedy, Limits of dense graph sequences. J. Combinat. Theory Ser. B 96 (2006) 933–957. [CrossRef] [Google Scholar]
  29. L. Lovász and B. Szegedy, Szemerédi’s lemma for the analyst. Geometr. Funct. Anal. 17 (2007) 1252–1270. [Google Scholar]
  30. P. Pedregal, Nonlocal variational principles. Nonlin. Anal. Theory Methods Appl. 29 (1997) 1379–1392. [CrossRef] [Google Scholar]
  31. P. Pedregal, Weak lower semicontinuity and relaxation for a class of non-local functionals. Revista Matemática Complutense 29 (2016) 485–495. [CrossRef] [Google Scholar]
  32. R. Rossi and G. Savaré, Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Ser. 5 2 (2003) 395–431. [Google Scholar]
  33. N.G. Trillos and D. Slepčev, Continuum limits of total variation on point clouds. Arch. Ratl. Mech. Anal. 220 (2016) 193–241. [CrossRef] [Google Scholar]
  34. M. Valadier, A course on Young measures. Rendiconti dell’Istituto di Matematica dell’Universitá di Trieste 26 (1994) 349–394. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.