Free Access
Issue
ESAIM: COCV
Volume 26, 2020
Article Number 30
Number of page(s) 34
DOI https://doi.org/10.1051/cocv/2019014
Published online 24 March 2020
  1. L. Ambrosio, A. Coscia and G. Dal Maso Fine properties of functions with bounded deformation. Arch. Ratl. Mech. Anal. 139 (1997) 201–238. [CrossRef] [MathSciNet] [Google Scholar]
  2. L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford University Press, Oxford (2000). [Google Scholar]
  3. D. Burago Yu and N.N. Kosovoskiä, The trace of BV -functions on an irregular subset. St. Petersburg Math. J. 22 (2011) 251–266. [CrossRef] [Google Scholar]
  4. G. Dal Maso, Generalised functions of bounded deformation. J. Eur. Math. Soc. 15 (2013) 1943–1997. [CrossRef] [Google Scholar]
  5. G. Dal Maso and C.J. Larsen, Existence for wave equations in domains with arbitrary growing cracks. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 22 (2011) 387–408. [CrossRef] [Google Scholar]
  6. G. Dal Maso and G. Lazzaroni, Quasistatic crack growth in finite elasticity with non-interpenetration. Ann. Inst. Henri Poincaré Anal. Non Linaire 27 (2010) 257–290. [CrossRef] [Google Scholar]
  7. E. De Giorgi, Free discontinuity problems in calculus of variations. Frontiers in pure and applied Mathematics, a collection of papers dedicated to J.L. Lions on the occasion of his 60-th birthday. Edited by R. Dautray. North Holland (1991) 55–62. [Google Scholar]
  8. E. De Giorgi and L. Ambrosio, Un nuovo funzionale del calcolo delle variazioni. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl. 82 (1988) 199–210. [Google Scholar]
  9. L. Evans and R.F. Gariepy, Measure theory and fine properties of functions. CRC Press, Boca Raton (1992). [Google Scholar]
  10. H. Federer, Geometric measure theory. Springer-Verlag, Berlin (1969). [Google Scholar]
  11. S. Krantz and H.R. Parks, Geometric Integration Theory. Cornerstones. Birkhäuser Boston Inc., Boston, MA (2008). [CrossRef] [Google Scholar]
  12. V.G. Maz’ja, Sobolev Spaces. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin (1985). [CrossRef] [Google Scholar]
  13. E. Tasso, Existence for equations of elastodynamics on domains with arbitrary growing cracks, in preparation. [Google Scholar]
  14. R. Temam, Mathematical problems in plasticity. Gauthier-Villars, Paris, 1985. Translation of Problèmes mathématiques en plasticité. Gauthier-Villars, Paris (1983). [Google Scholar]
  15. R. Temam, On the continuity of the trace of vector functions with bounded deformation. Appl. Anal. 11 (1981) 291–302. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.