Free Access
Issue
ESAIM: COCV
Volume 26, 2020
Article Number 6
Number of page(s) 20
DOI https://doi.org/10.1051/cocv/2019063
Published online 10 February 2020
  1. L. Ambrosio, A compactness theorem for a new class of functions of bounded variation. Boll. Unione Mat. Ital., VII. Ser., B 3 (1989) 857–881 [Google Scholar]
  2. L. Ambrosio, Existence theory for a new class of variational problems. Arch. Ration. Mech. Anal. 111 (1990) 291–322 [Google Scholar]
  3. L. Ambrosio, N. Fusco and J. E. Hutchinson, Higher integrability of the gradient and dimension of the singular set for minimisers of the Mumford-Shah functional. Calc. Var. Partial Differ. Equ. 16 (2003) 187–215 [Google Scholar]
  4. L. Ambrosio, N. Fusco and D. Pallara, Partial regularity of free discontinuity sets, II. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 24 (1997) 39–62 [Google Scholar]
  5. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Science Publications. Clarendon Press (2000) [Google Scholar]
  6. L. Ambrosio and D. Pallara, Partial regularity of free discontinuity sets, I. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 24 (1997) 1–38 [Google Scholar]
  7. G. Anzellotti, On the C1,α-regularity of ω-minima of quadratic functionals. Boll. Unione Mat. Ital., VI. Ser., C, Anal. Funz. Appl. 2 (1983) 195–212 [Google Scholar]
  8. A. Bonnet, On the regularity of edges in image segmentation. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 13 (1996) 485–528 [CrossRef] [Google Scholar]
  9. G. David, C1-arcs for minimizers of the Mumford-Shah functional. SIAM J. Appl. Math. 56 (1996) 783–888 [Google Scholar]
  10. G. David, Singular Sets of Minimizers for the Mumford-Shah Functional. Progress in Mathematics. Birkhäuser (2005) [Google Scholar]
  11. E. De Giorgi and L. Ambrosio, Un nuovo tipo di funzionale del calcolo delle variazioni. Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 82 (1988) 199–210 [Google Scholar]
  12. E. De Giorgi and L. Ambrosio, New functionals in calculus of variations. In Nonsmooth Optimization and Related Topics, edited by F.H. Clarke, V.F. Dem’yanov and F. Giannessi. Springer Boston (1989) 49–59 [CrossRef] [Google Scholar]
  13. E. De Giorgi, M. Carriero and A. Leaci, Existence theorem for a minimum problem with free discontinuity set. Arch. Ration. Mech. Anal. 108 (1989) 195–218 [Google Scholar]
  14. F. Duzaar, A. Gastel and J. F. Grotowski, Partial regularity for almost minimizers of quasi-convex integrals. SIAM J. Math. Anal. 32 (2000) 665–687 [CrossRef] [MathSciNet] [Google Scholar]
  15. C. De Lellis and M. Focardi, Higher integrability of the gradient for minimizers of the 2d Mumford-Shah energy. J. Math. Pures Appl. (9) 100 (2013) 391–409 [CrossRef] [Google Scholar]
  16. C. De Lellis, M. Focardi and B. Ruffini, A note on the Hausdorff dimension of the singular set for minimizers of the Mumford-Shah energy. Adv. Calc. Var. 7 (2014) 539–545 [CrossRef] [Google Scholar]
  17. G. De Philippis and A. Figalli, Higher integrability for minimizers of the Mumford-Shah functional. Arch. Ration. Mech. Anal. 213 (2014) 491–502 [Google Scholar]
  18. M. Focardi, Fine regularity results for Mumford-Shah minimizers: porosity, higher integrability and the Mumford-Shah conjecture. In Free discontinuity problems, edited by N. Fusco and A. Pratelli. Edizioni della Normale Scuola Normale Superiore, Pisa (2016) 1–68 [Google Scholar]
  19. N. Fusco, An overview of the Mumford-Shah problem. Milan J. Math. 71 (2003) 95–119 [CrossRef] [Google Scholar]
  20. J.C. Leger, Flatness and finiteness in the Mumford-Shah problem. J. Math. Pures Appl. (9), 78 (1999) 431–459 [CrossRef] [Google Scholar]
  21. F. Maddalena and S. Solimini, Concentration and flatness properties of the singular set of bisected balls. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 30 (2001) 623–659 [Google Scholar]
  22. F. Maddalena and S. Solimini, Regularity properties of free discontinuity sets. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 18 (2001) 675–685 [CrossRef] [Google Scholar]
  23. D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42 (1989) 577–685 [Google Scholar]
  24. S. Piontek, Höhere Integrierbarkeit für Fast-Minimierer des Mumford-Shah-Funktionals. Master Thesis. University Erlangen-Nuremberg (2016) [Google Scholar]
  25. S. Rigot, Big pieces of C1,α-graphs for minimizers of the Mumford-Shah functional. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 29 (2000) 329–349 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.