Free Access
Volume 26, 2020
Article Number 12
Number of page(s) 43
Published online 14 February 2020
  1. O. Bodart, M. González-Burgos and R. Pérez-García, Insensitizing controls for a heat equation with a nonlinear term involving the state and the gradient. Nonlinear Anal. 57 (2004) 687–711. [CrossRef] [Google Scholar]
  2. F. Boyer, On the penalised HUM approach and its applications to the numerical approximation of null-controls for parabolic problems. ESAIM Proc. 41 (2013) 15–58. [CrossRef] [Google Scholar]
  3. F. Boyer, V. Hernández-Santamaría and L. de Teresa, Insensitizing controls for a semilinear parabolic equation: a numerical approach. Math. Control Relat. Fields 9 (2019) 117–158. [CrossRef] [Google Scholar]
  4. F. Boyer, F. Hubert and J. Le Rousseau, Discrete Carleman estimates for elliptic operators and uniform controllability of semi-discretized parabolic equations. J. Math. Pures Appl. 93 (2010) 240–276. [Google Scholar]
  5. F. Boyer, F. Hubert and J. Le Rousseau, Uniform null-controllability for space/time-discretized parabolic equations. Numer. Math. 118 (2011) 601–661. [Google Scholar]
  6. F. Boyer and J. Le Rousseau, Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014) 1035–1078. [CrossRef] [Google Scholar]
  7. S. Ervedoza and J. Valein, On the observability of abstract time-discrete linear parabolic equations. Rev. Mat. Complut. 23 (2010) 163–190. [CrossRef] [Google Scholar]
  8. S. Ervedoza, C. Zheng and E. Zuazua, On the observability of time-discrete conservative linear systems. J. Funct. Anal. 254 (2008) 3037–3078. [Google Scholar]
  9. C. Fabre, J.P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation. Proc. Royal Soc. Edinburgh 125A (1995) 31–61. [CrossRef] [MathSciNet] [Google Scholar]
  10. E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability. SIAM J. Control Optim. 45 (2006) 1395–1446. [Google Scholar]
  11. E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000) 583–616. [CrossRef] [MathSciNet] [Google Scholar]
  12. A. Fursikov and O. Yu. Imanuvilov, Controllability of evolution equations. Lecture Notes, Research Institute of Mathematics, Seoul National University, Korea (1996). [Google Scholar]
  13. M. González-Burgos and L. de Teresa, Controllability results for cascade systems of m coupled parabolic PDEs by one control force. Portugal. Math. 67 (2010) 91–113. [CrossRef] [MathSciNet] [Google Scholar]
  14. M. Gueye, Insensitizing controls for the Navier-Stokes equations. Ann. I. H. Poincaré–AN 30 (2013) 825–844. [CrossRef] [Google Scholar]
  15. G. Lebeau and L. Robbiano, Contrôle exact de l’équation de la chaleur. Comm. Partial Differ. Equ. 20 (1995) 335–356. [CrossRef] [MathSciNet] [Google Scholar]
  16. G. Lebeau and E. Zuazua, Null-controllability of a system of linear thermoelasticity. Arch. Rational Mech. Anal. 141 (1998) 297–329. [CrossRef] [MathSciNet] [Google Scholar]
  17. J.-L. Lions, Quelques notions dans l’analyse et le contrôle de systèmes à données incomplètes. Proceedings of the XIth Congress on Differential Equations and Applications/First Congress on Applied Mathematics, University of Málaga (1990) 43–54. [Google Scholar]
  18. P. Lissy, Y. Privat and Y. Simpore, Insensitizing control for linear and semi-linear heat equations with partially unknown domain. ESAIM: COCV (2018). [Google Scholar]
  19. L. de Teresa, Insensitizing controls for a semilinear heat equation. Comm. Partial Differ. Equ. 25 (2000) 39–72. [CrossRef] [MathSciNet] [Google Scholar]
  20. L. de Teresa and E. Zuazua, Identification of the class of initial data for the insensitizing control of the heat equation. Commun. Pure. Appl. Anal. 8 (2009) 457–471. [CrossRef] [Google Scholar]
  21. D. Xu, On the Observability of Time Discrete Integro-differential Systems. Appl. Math. Optim. (2019). [Google Scholar]
  22. X. ZhangC. Zheng and E. Zuazua, Time discrete wave equations: boundary observability and control. Discrete Contin. Dyn. Syst. 23 (2009) 571–604. [CrossRef] [Google Scholar]
  23. C. Zheng, Controllability of the time discrete heat equation. Asymptot. Anal. 59 (2008) 139–177. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.