Free Access
Issue
ESAIM: COCV
Volume 26, 2020
Article Number 14
Number of page(s) 37
DOI https://doi.org/10.1051/cocv/2020004
Published online 14 February 2020
  1. F. Alabau-Boussouira, Indirect boundary stabilization of weakly coupled hyperbolic systems. SIAM J. Control Optim. 41 (2002) 511–541. [Google Scholar]
  2. F. Alabau-Boussouira, A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems. SIAM J. Control Optim. 42 (2003) 871–906. [Google Scholar]
  3. F. Alabau-Boussouira, Insensitizing exact controls for the scalar wave equation and exact controllability of 2-coupled cascade systems of PDE’s by a single control. Math. Control Signals Syst. 26 (2014) 1–46. [CrossRef] [MathSciNet] [Google Scholar]
  4. F. Alabau-Boussouira and M. Léautaud, Indirect stabilization of locally coupled wave-type systems. ESAIM Control Optim. Calc. Var. 18 (2012) 548–582. [CrossRef] [EDP Sciences] [Google Scholar]
  5. F. Alabau-Boussouira and M. Léautaud, Indirect controllability of locally coupled wave-type systems and applications. J. Math. Pures Appl. 99 (2013) 544–576. [Google Scholar]
  6. F. Alabau-Boussouira, J.-M. Coron and G. Olive, Internal Controllability of First Order Quasi-linear Hyperbolic Systems with a Reduced Number of Controls. SIAM J. Control Optim. 55 (2017) 300–323. [Google Scholar]
  7. F. Alabau-Boussouira, Z. Wang and L. Yu, A one-step optimal energy decay formula for indirectly nonlinearly damped hyperbolic systems coupled by velocities. ESAIM Control Optim. Calc. Var. 23 (2017) 721–749. [CrossRef] [Google Scholar]
  8. L. Aloui and M. Daoulatli, Stabilization of two coupled wave equations on a compact manifold with boundary. J. Math. Anal. Appl. 436 (2016) 944–969. [Google Scholar]
  9. F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials. J. Math. Pures Appl. 96 (2011) 555–590. [Google Scholar]
  10. F. Ammar-Khodja, A. Benabdallah, C. Dupaix and I. Kostin, Null-controllability of some systems of parabolic type by one control force. ESAIM Control Optim. Calc. Var. 11 (2005) 426–448. [CrossRef] [EDP Sciences] [Google Scholar]
  11. F. Ammar-Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, A Kalman rank condition for the localized distributed controllability of a class of linear parbolic systems. J. Evol. Equ. 9 (2009) 267–291. [CrossRef] [MathSciNet] [Google Scholar]
  12. F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Recent results on the controllability of linear coupled parabolic problems: a survey. Math. Control Relat. Fields 1 (2011) 267–306. [CrossRef] [MathSciNet] [Google Scholar]
  13. S. Avdonin and M. Tucsnark, Simultaneous controllability in sharp time for two elastic strings. ESAIM Control Optim. Calc. Var. 6 (2001) 259–273. [CrossRef] [Google Scholar]
  14. C. Bardos, G. Lebeau and J. Rauch, Un exemple d’utilisation des notions de propagation pour le contrôle et la stabilisation de problèmes hyperboliques. Rend. Sem. Mat. Univ. Politec. Torino 11–31 (1989) 1988. [Google Scholar]
  15. C. Bardos, G. Lebeau and J. Rauch, Microlocal ideas in control and stabilization, in Control of boundaries and stabilization, edited by Clermont-Ferrand Vol. 125 of Lecture Notes in Control and Information Sciences, Springer, Berlin (1989) 14–30. [CrossRef] [Google Scholar]
  16. C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024–1065. [Google Scholar]
  17. F. Boyer and G. Olive, Approximate controllability conditions for some linear 1D parabolic systems with space-dependent coefficients. Math. Control Relat. Fields 4 (2014) 263–287. [CrossRef] [MathSciNet] [Google Scholar]
  18. P. Brunovský, A classification of linear controllable systems. Kybernetika (Prague) 6 (1970) 173–188. [Google Scholar]
  19. N. Burq and G. Lebeau, Mesures de défaut de compacité, application au système de Lamé. Ann. Sci. École Norm. Sup. (4) 34 (2001) 817–870. [CrossRef] [Google Scholar]
  20. Y. Cui and C. Laurent, On the control of coupled wave equations: the case with boundary, in preparation, 2018. [Google Scholar]
  21. Y. Cui and Z. Wang, Asymptotic stability of wave equations coupled by velocities. Math. Control Relat. Fields 6 (2016) 429–446. [CrossRef] [MathSciNet] [Google Scholar]
  22. J.-M. Coron, Control and nonlinearity, in Mathematical Surveys and Monographs, Vol. 136 American Mathematical Society, Providence, RI (2007). [Google Scholar]
  23. R. Dáger, Insensitizing controls for the 1-D wave equation. SIAM J. Control Optim. 45 (2006) 1758–1768. [Google Scholar]
  24. B. Dehman and G. Lebeau, Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time. SIAM J. Control Optim. 48 (2009) 521–550. [Google Scholar]
  25. B. Dehman, J. Le Rousseau and M. Léautaud, Controllability of two coupled wave equations on a compact manifold. Arch. Ration. Mech. Anal. 211 (2014) 113–187. [Google Scholar]
  26. M. Duprez and P. Lissy, Indirect controllability of some linear parabolic systems of m equations with m − 1 controls involving coupling terms of zero or first order. J. Math. Pures Appl. 106 (2016) 905–934. [Google Scholar]
  27. M. Duprez and G. Olive, Compact perturbations of controlled systems. Math. Control Relat. Fields 8 (2018) 397–410. [CrossRef] [Google Scholar]
  28. S. Ervedoza and E. Zuazua, Sharp observability estimates for heat equations. Arch. Ration. Mech. Anal. 202 (2011) 975–1017. [Google Scholar]
  29. S. Guerrero, Null controllability of some systems of two parabolic equations with one control force. SIAM J. Control Optim. 46 (2007) 379–394. [Google Scholar]
  30. L. Hörmander, The analysis of linear partial differential operators. III, Classics in Mathematics, Springer, Berlin (2007). Pseudo-differential operators, Reprint of the 1994 edition. [CrossRef] [Google Scholar]
  31. G. Klein, Best exponential decay rate of energy for the vectorial damped wave equation. SIAM J. Control Optim. 56 (2017) 3432–3453. [Google Scholar]
  32. C. Laurent and M. Léautaud, Uniform observability estimates for linear waves. ESAIM Control Optim. Calc. Var. 22 (2016) 1097–1136. [CrossRef] [Google Scholar]
  33. G. Lebeau. Équation des ondes amorties, in Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), Vol. 19 of Mathematical Physics Studies, Springer, Berlin (1996) 73–109. [Google Scholar]
  34. G. Lebeau and M. Nodet, Experimental study of the HUM control operator for linear waves. Exp. Math. 19 (2010) 93–120. [Google Scholar]
  35. T. Li and B. Rao, Exact synchronization for a coupled system of wave equations with Dirichlet boundary controls. Chin. Ann. Math. Ser. B 34 (2013) 139–160. [CrossRef] [MathSciNet] [Google Scholar]
  36. T. Li and B. Rao, Exact synchronization for a coupled system of wave equations with Dirichlet boundary controls, in Partial differential equations: theory, control and approximation, Springer, Dordrecht (2014) 295–321. [CrossRef] [Google Scholar]
  37. T. Liard and P. Lissy, A Kalman rank condition for the indirect controllability of coupled systems of linear operator groups. Math. Control Signals Syst. 29 (2017) 29:9. [CrossRef] [Google Scholar]
  38. J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems. SIAM Rev. 30 (1988) 1–68. [CrossRef] [MathSciNet] [Google Scholar]
  39. P. Lissy and E. Zuazua, Internal observability for coupled systems of linear partial differential equations 57 (2019) 832–853. [Google Scholar]
  40. X. Liu, Q. Lv̈ and X. Zhang. Finite codimensional controllability for evolution equations [arXiv:1810.01334]. [Google Scholar]
  41. M. López-Garcia, A. Mercado and L. de Teresa, Null controllability of a cascade system of Schrödinger equations. Electron. J. Differ.Equ. 12 (2016) 74. [Google Scholar]
  42. L. Miller, The control transmutation method and the cost of fast controls. SIAM J. Control Optim. 45 (2006) 762–772. [Google Scholar]
  43. A. Pazy, Semigroups of linear operators and applications to partial differential equations, in Applied Mathematical Sciences, Vol. 44, Springer-Verlag (New York 1983). [CrossRef] [Google Scholar]
  44. D.L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20 (1978) 639–739. [CrossRef] [MathSciNet] [Google Scholar]
  45. L. Tebou, Locally distributed desensitizing controls for the wave equation. C. R. Math. Acad. Sci. Paris 346 (2008) 407–412. [CrossRef] [Google Scholar]
  46. E. Trélat, Contrôle optimal, Mathématiques Concrètes, [Concrete Mathematics], Vuibert, Paris (2005). Théorie & applications. [Theory and applications]. [Google Scholar]
  47. R. Vaillancourt, On the stability of Friedrichs’ scheme and the modified Lax-Wendroff scheme. Math. Comp. 24 (1970) 767–770. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.