Free Access
Issue
ESAIM: COCV
Volume 26, 2020
Article Number 21
Number of page(s) 32
DOI https://doi.org/10.1051/cocv/2019070
Published online 25 February 2020
  1. M. Bender, G.V. Dunne and P.N. Meisinger, Complex periodic potentials with real band spectra. Phys. Lett. A 252 (1999) 272–276. [Google Scholar]
  2. F.A. Berezin and M.A. Shubin, The Schrödinger equation. Kluwer, Dordrecht (1991). [CrossRef] [Google Scholar]
  3. D. Borisov, Discrete spectrum of an asymmetric pair of waveguides coupled through a window. Sbornik Math. 197 (2006) 475–504. [CrossRef] [Google Scholar]
  4. D. Borisov, On the spectrum of a Schroedinger operator perturbed by a rapidly oscillating potential. J. Math. Sci. 139 (2006) 6243–6322. [CrossRef] [MathSciNet] [Google Scholar]
  5. D. Borisov, On spectrum of two-dimensional periodic operator with small localized perturbation. Izv. Math. 75 (2011) 471–505. [CrossRef] [Google Scholar]
  6. D. Borisov and R.R. Gadyl’shin, On spectrum of periodic operator with a small localized perturbation. Izv. Math. 72 (2008) 659–688. [CrossRef] [Google Scholar]
  7. D. Borisov and G. Cardone, Planar waveguide with “twisted” boundary conditions: discrete spectrum. J. Math. Phys. 52 (2011) 123513. [Google Scholar]
  8. D. Borisov and K.V. Pankrashkin, Quantum waveguides with small periodic perturbations: gaps and edges of Brillouin zones. J. Phys. A. Math. Theor. 46 (2013) 235203. [Google Scholar]
  9. D. Borisov and S. Dmitriev, On the spectral stability of kinks in 2D Klein-Gordon model with parity-time-symmetric perturbation. Stud. Appl. Math. 138 (2017) 317–342. [Google Scholar]
  10. D. Borisov and M. Znojil, On eigenvalues of a PT-symmetric operator in a thin layer. Sbornik Math. 208 (2017) 173–199. [CrossRef] [Google Scholar]
  11. E. Caliceti and S. Graffi, Reality and non-reality of the spectrum of 𝒫𝒯-symmetric operators: Operator-theoretic criteria Pramana J. Phys. 73 (2009) 241–249. [CrossRef] [Google Scholar]
  12. G. Cardone, S.A. Nazarov and K. Ruotsalainen, Bound states of a converging quantum waveguide. ESAIM: M2AN 47 (2013) 305–15. [CrossRef] [EDP Sciences] [Google Scholar]
  13. C.W. Curtis and M.J. Ablowitz, On the existence of real spectra in 𝒫𝒯-symmetric honeycomb optical lattices. J. Phys. A: Math. Theor. 47 (2014) 225205. [CrossRef] [Google Scholar]
  14. C.W. Curtis and Yi Zhu. Dynamics in 𝒫𝒯-symmetric honeycomb lattices with nonlinearity. Stud. Appl. Math. 135 (2015) 139–170. [Google Scholar]
  15. A. Demirkaya, T. Kapitula, P.G. Kevrekidis, M. Stanislavova and A. Stefanov, On the spectral stability of kinks in some PT-symmetric variants of the classical Klein-Gordon field theories. Stud. Appl. Math. 133 (2014) 298–317. [Google Scholar]
  16. T. Dohnal and D. Pelinovsky, Bifurcation of nonlinear bound states in the periodic Gross-Pitaevskii equation with 𝒫𝒯-symmetry. To appear Proc. Royal Soc. Edinburgh Sect. A: Math., DOI: 10.1017/prm.2018.83 (to appear). [Google Scholar]
  17. P. Duclos and P. Exner, Curvature-induced bound states in quantum waveguides in two and three dimensions. Rev. Math. Phys. 7 (1995) 73–102. [CrossRef] [MathSciNet] [Google Scholar]
  18. P. Duclos, P. Exner and D. Krejčiřík, Bound states in curved quantum layers. Commun. Math. Phys. 223 (2001) 13–28. [CrossRef] [Google Scholar]
  19. R. El-Ganainy, K.G. Makris, M. Khajavikhan, Z.H. Musslimani, S. Rotter and D.N. Christodoulides, Non-Hermitian physics and PT symmetry. Nat. Phys. 14 (2018) 11–19. [Google Scholar]
  20. P. Exner, P. Šeba, M. Tater and D. Vaněck, Bound states and scattering in quantum waveguides coupled laterally through a boundary window. J. Math. Phys. 37 (1996) 4867–4887. [Google Scholar]
  21. L. Feng, R. El-Ganainy and Li Ge, Non-Hermitian photonics based on parity time symmetry. Nat. Photonics 11 (2017) 752–762. [Google Scholar]
  22. R.R. Gadyl’shin, On regular and singular perturbations of acoustic and quantum waveguides. C.R. Mech. 332 (2004) 647–652. [CrossRef] [Google Scholar]
  23. F. Gesztesy and H. Holden, A unified approach to eigenvalues and resonances of Schrödinger operators using Fredholm determinants. J. Math. Anal. Appl. 123 (1987) 181–198. [Google Scholar]
  24. I.M. Glazman, Direct methods of qualitative spectral analysis of singular differential operators. Israel Program for Scientific Transl., Jerusalem (1965). [Google Scholar]
  25. M. Klaus and B. Simon, Coupling constant thresholds in nonrelativistic quantum mechanics. I. Short range two-body case. Ann. Phys. 130 (1980) 251–281. [Google Scholar]
  26. V.V. Konotop, J. Yang and D.A. Zezyulin, Nonlinear waves in PT-symmetric systems. Rev. Modern Phys. 88 (2016) 035002. [CrossRef] [Google Scholar]
  27. D. Krejčiřík, P. Siegl, M. Tater and J. Viola, Pseudospectra in non-Hermitian quantum mechanics, J. Math. Phys. 56 (2015) 103513. [Google Scholar]
  28. B. Mityagin, P. Siegl and J. Viola, Differential operators admitting various rates of spectral projection growth. J. Funct. Anal. 272 (2017) 3129–3175. [Google Scholar]
  29. H. Najar and O. Olendski, Spectral and localization properties of the Dirichlet wave guide with two concentric Neumann discs. J. Phys. A: Math. Theor. 44 (2011) 305304. [CrossRef] [Google Scholar]
  30. S.A. Nazarov, Variational and asymptotic methods for finding eigenvalues below the continuous spectrum threshold. Siberian Math. J. 51 (2010) 866–878. [CrossRef] [Google Scholar]
  31. O. Olendski and L. Mikhailovska, A straight quantum wave guide with mixed Dirichlet and Neumann boundary conditions in uniform magnetic fields. J. Phys. A: Math. Theor. 40 (2007) 4609–4634. [CrossRef] [Google Scholar]
  32. L. Parnovski and R. Shterenberg. Perturbation theory for almost-periodic potentials I. One-dimensional case. Commun. Math. Phys. 366 (2019) 1229–1257. [CrossRef] [Google Scholar]
  33. D. Saadatmand, S.V. Dmitriev, D. Borisov and P.G. Kevrekidis, Interaction of sine-Gordon kinks and breathers with a parity-time-symmetric defect. Phys. Rev. E 90 (2014) 052902. [Google Scholar]
  34. D. Saadatmand, D.I. Borisov, P.G. Kevrekidis, K. Zhou and S.V. Dmitriev, Resonant interaction of ϕ4 kink with spatially periodic 𝒫𝒯-symmetric perturbation. Comm. Nonl. Sci. Numer. Simul. 56 (2018) 62–76. [CrossRef] [Google Scholar]
  35. K.C. Shin, On the shape of spectra for non-self-adjoint periodic Schrödinger operators. J. Phys. A. Math. Gen. 37 (2004) 8287–8292. [Google Scholar]
  36. B. Simon, The bound state of weakly coupled Schrödinger operators in one and two dimensions. Ann. Phys. 97 (1976) 279–288. [Google Scholar]
  37. S.V. Suchkov, A.A. Sukhorukov, J. Huang, S.V. Dmitriev, C. Lee and Y.S. Kivshar, Nonlinear switching and solitons in PT-symmetric photonic systems. Laser Photonics Rev. 10 (2016) 177–213. [CrossRef] [Google Scholar]
  38. O. Veliev, On the spectral properties of the Schrödinger operator with a periodic PT-symmetric potential. Int. J. Geom. Meth. Modern Phys. 14 (2017) 1750065. [CrossRef] [Google Scholar]
  39. O. Veliev, The spectrum of the Hamiltonian with a PT-symmetric periodic optical potential. Int. J. Geom. Meth. Modern Phys. 15 (2018) 1850008. [CrossRef] [Google Scholar]
  40. J. Yang, Classes of non-parity-time-symmetric optical potentials with exceptional-point-free phase transitions. Optics Lett. 42 (2017) 4067–4070. [CrossRef] [Google Scholar]
  41. V.A. Zheludev, Eigenvalues of the perturbed Schrödinger operators with a periodic potential. Topics Math. Phys. 2 (1968) 87–101. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.