Free Access
Issue
ESAIM: COCV
Volume 26, 2020
Article Number 15
Number of page(s) 36
DOI https://doi.org/10.1051/cocv/2019064
Published online 14 February 2020
  1. A. Aleksenko and A. Plakhov, Bodies of zero resistance and bodies invisible in one direction. Nonlinearity 22 (2009) 1247–1258. [Google Scholar]
  2. F. Brock, V. Ferone and B. Kawohl, A symmetry problem in the calculus of variations. Calc. Var. Partial Differ. Equ. 4 (1996) 593–599. [Google Scholar]
  3. G. Buttazzo and A. Frediani, A survey on the Newton problem of optimal profiles, in Variational Analysis and Aerospace Engineering, Springer (2009), chap 3, 33–48. [CrossRef] [Google Scholar]
  4. G. Buttazzo and B. Kawohl, On newton’s problem of minimal resistance. Math. Intell. 15 (1993) 7–12. [CrossRef] [Google Scholar]
  5. G. Buttazzo, V. Ferone and B. Kawohl, Minimum problems over sets of concave functions and related questions. Math. Nach. 173 (1995) 71–89. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Colesanti, A steiner type formula for convex functions. Mathematika 44 (1997) 195–214. [CrossRef] [Google Scholar]
  7. A. Colesanti and D. Hug, Hessian measures of semi-convex functions and applications to support measures of convex bodies. Manuscr. Math. 101 (2000) 209–238. [CrossRef] [Google Scholar]
  8. V.V. Golubev, Lectures on the analytic theory of differential equations, in Russian. Moscow, Leningrad (1950). [Google Scholar]
  9. N. Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations, vol 7. Wiley (1999). [Google Scholar]
  10. N.H. Ibragimov, Hornbook of group analysis. Moscow (1989). [Google Scholar]
  11. N.H. Ibragimov, Experience of group analysis of ODEs, in Russian. Moscow (1991). [Google Scholar]
  12. G. Julia, Exercices d’Analyse, Tome III Equations Differentielles. Gauthier-Villars, Paris (1933). [Google Scholar]
  13. T. Lachand-Robert and É. Oudet, Minimizing within convex bodies using a convex hull method. SIAM J. Optim. 16 (2005) 368–379. [Google Scholar]
  14. T. Lachand-Robert and M. Peletier, An example of non-convex minimization and an application to Newton’s problem of the body of least resistance. Ann. l’Inst. Henri Poincare (C) Non Linear Anal. 18 (2001) 179–198. [CrossRef] [MathSciNet] [Google Scholar]
  15. T. Lachand-Robert and M. Peletier, Newton’s problem of the body of minimal resistance in the class of convex developable functions. Math. Nachr. 226 (2001) 153–176. [CrossRef] [Google Scholar]
  16. L.V. Lokutsievskiy and M.I. Zelikin, Hessian measures in the aerodynamic Newton problem. J. Dyn. Control Syst. 24 (2018) 475–495. [Google Scholar]
  17. P. Marcellini, Non convex integrals of the Calculus of Variations. Springer Berlin Heidelberg, Berlin, Heidelberg (1990) 16–57. [Google Scholar]
  18. Newton, Philosophiæ Naturalis Principia Mathematica (1687). [Google Scholar]
  19. L. Ovsiannikov, Group Analysis of Differential Equations. Academic Press, Elsevier Inc. (1982). [Google Scholar]
  20. A. Polyanin and V. Zaitsev, Handbook of Nonlinear Partial Differential Equations (Second Edition, Updated, Revised and Extended). Chapman & Hall/CRC Press, Boca Raton-London-New York (2012). [Google Scholar]
  21. R.T. Rockafellar, Convex Analysis. Princeton University Press, Princeton (1997). [Google Scholar]
  22. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, second expanded edition edn. Cambridge University Press, Cambridge (2014). [Google Scholar]
  23. G. Wachsmuth, The numerical solution of newton’s problem of least resistance. Math. Program. 147 (2014) 331–350. [Google Scholar]
  24. M.I. Zelikin, Optimal control and calculus of variations, in Russian. Moscow (2004). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.