Free Access
Issue
ESAIM: COCV
Volume 26, 2020
Article Number 16
Number of page(s) 29
DOI https://doi.org/10.1051/cocv/2020001
Published online 14 February 2020
  1. N. Agram and B. Øksendal, Malliavin calculus and optimal control of stochastic Volterra equations. J. Optim. Theory Appl., 167 (2015) 1070–1094 [Google Scholar]
  2. K. Arrow, Optimal capital policy, the cost of capital and myopic decision rules. Ann. Inst. Stat. Math., 16 (1964) 21–30. [Google Scholar]
  3. A. Bensoussan, Lectures on stochastic control, Lecture notes in mathematics, Vol. 972 of Nonlinear filtering and stochastic control, proceedings, Cortona (1981). [Google Scholar]
  4. J. Bismut, An introductory approach to duality in optimal stochastic control. SIAM Rev. 20 (1978) 62–78. [CrossRef] [MathSciNet] [Google Scholar]
  5. V. Boltyanski, R. Gamkrelidze and L. Pontryagin, The theory of optimal processes. I: The maximum principle. Izv. Akad. Nauk SSSr Ser. Mat. 24 (1960) 3–42 (in Russian); English transl. in Am. Math. Soc. Transl. 18 (1961) 341–382. [Google Scholar]
  6. K. Du and Q. Meng, A maximum principle for optimal control of stochastic evolution equations. SIAM J. Control Optim. 51 (2013) 4343–4362. [Google Scholar]
  7. A. Friedman, Optimal control for hereditary processes. Arch. Rat. Mech. Anal. 15 (1964) 396–416. [CrossRef] [Google Scholar]
  8. M. Fuhrman, Y. Hu and G. Tessitore, Stochastic maximum principle for optimal control of SPDEs. Appl. Math. Optim. 68 (2013) 181–217. [Google Scholar]
  9. P. Lin and J. Yong, Controlled singular Volterra integral equations and Pontryagin maximum principle. Preprint arXiv:1712.05911v1. [Google Scholar]
  10. Q. Lü and X. Zhang, General Pontryagin-type stochastic maximum principle and backward stochastic evolution equation in infinite dimensions, Springer Briefs in Mathematics (2014). [Google Scholar]
  11. H. Kushner, Necessary conditions for continuous parameter stochastic optimization problems. SIAM J. Control, 10 (1972) 550–565. [CrossRef] [Google Scholar]
  12. P. Protter, Volterra equations driven by semimartingales. Ann. Probab., 13 (1985) 519–530. [Google Scholar]
  13. S. Peng, A general stochastic maximum principle for optimal control problems. SIAM J. Control Optim. 28 (1990) 966–979. [Google Scholar]
  14. Y. Shi, T. Wang and J. Yong, Optimal control problems of forward-backward stochastic Volterra integral equations. Math. Control Relat. Fields, 5 (2015) 613–649. [CrossRef] [Google Scholar]
  15. V. Vinokurov, Optimal control of processes described by integral equations, I, II, III. Izv. Vysš. Učebn. Zaved. Matematika 7 (1969) 21–33; 8 (1969) 16–23; 9 (1969) 16–25; (in Russian) English transl. in SIAM J. Control 7 (1967) 324–336, 337–345, 346–355. [Google Scholar]
  16. T. Wang, Linear quadratic control problems of stochastic Voltera integral equations. ESAIM: Control Optim. Cal. Var. 24 (2018) 1849–1879. [CrossRef] [Google Scholar]
  17. T. Wang and J. Yong, Comparison theorems for backward stochastic Volterra integral equations. Stochastic Process Appl., 125 (2015) 1756–1798. [CrossRef] [Google Scholar]
  18. T. Wangand H. Zhang, Optimal control problems of forward-backward stochastic Volterra integral equations with closed control regions. SIAM J. Control Optim. 55 (2017) 2574–2602. [Google Scholar]
  19. J. Yong, Backward stochastic Volterra integral equations and some related problems. Stochastic Process Appl. 116 (2006) 779–795. [CrossRef] [Google Scholar]
  20. J. Yong, Well-posedness and regularity of backward stochastic Volterra integral equation. Probab. Theory Relat. Fields, 142 (2008) 21–77. [Google Scholar]
  21. J. Yong and X. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer-Verlag, New York, Berlin (2000). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.