Free access
Volume 4, 1999
Page(s) 361 - 376
Published online 15 August 2002
  1. J.P. Aubin and A. Cellina, Differential Inclusions, Springer Verlag (1984).
  2. J. Auslander and P. Seibert, Prolongations and Stability in Dynamical Systems. Ann. Inst. Fourier (Grenoble) 14 (1964) 237-268. [MathSciNet]
  3. A. Bacciotti, Local Stabilizability Theory of Nonlinear System, World Scientific (1992).
  4. A. Bacciotti and L. Rosier, Liapunov and Lagrange Stability: Inverse Theorems for Discontinuous Systems. Mathematics of Control, Signals and Systems 11 (1998) 101-128.
  5. N.P. Bhatia and G.P. Szëgo, Stability Theory of Dynamical Systems, Springer Verlag (1970).
  6. F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley and Sons (1983).
  7. F.H. Clarke, Yu.S. Ledyaev, E.D. Sontag and A.I. Subbotin, Asymptotic Controllability Implies Feeedback Stabilization. IEEE Trans. Automat. Control 42 (1997) 1394-1407. [CrossRef] [MathSciNet]
  8. F.H. Clarke, Yu.S. Ledyaev, R.J. Stern and P.R. Wolenski, Qualitative Properties of Control Systems: A Survey. J. Dynam. Control Systems 1 (1995) 1-47. [CrossRef] [MathSciNet]
  9. J.M. Coron and L. Rosier, A Relation between Continuous Time-Varying and Discontinuous Feedback Stabilization. J. Math. Systems, Estimation and Control 4 (1994) 67-84.
  10. K. Deimling, Multivalued Differential Equations, de Gruyter (1992).
  11. L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions, CRC (1992).
  12. A.F. Filippov, Differential Equations with Discontinuous Righthandside, Kluwer Academic Publishers (1988).
  13. R.A. Freeman and P.V. Kokotovic, Backstepping Design with Nonsmooth Nonlinearities, IFAC NOLCOS, Tahoe City, California (1995) 483-488.
  14. V. Jurdjevic and J.P. Quinn, Controllability and Stability. J. Differential Equations 28 (1978) 381-389. [CrossRef] [MathSciNet]
  15. O. Hájek, Discontinuous Differential Equations. I, II. J. Differential Equations 32 (1979) 149-170, 171-185.
  16. L. Mazzi and V. Tabasso, On Stabilization of Time-Dependent Affine Control Systems. Rend. Sem. Mat. Univ. Politec. Torino 54 (1996) 53-66. [MathSciNet]
  17. E.J. McShane, Integration, Princeton University Press (1947).
  18. B. Paden and S. Sastry, A Calculus for Computing Filippov's Differential Inclusion with Application to the Variable Structure Control of Robot Manipulators. IEEE Trans. Circuits and Systems Cas-34 (1997) 73-81.
  19. E.P. Ryan, An Integral Invariance Principle for Differential Inclusions with Applications in Adaptive Control. SIAM J. Control 36 (1998) 960-980. [CrossRef] [MathSciNet]
  20. D. Shevitz and B. Paden, Lyapunov Stability Theory of Nonsmooth Systems. IEEE Trans. Automat. Control 39 (1994) 1910-1914. [CrossRef] [MathSciNet]
  21. E.D. Sontag, A Lyapunov-like Characterization of Asymptotic Controllability. SIAM J. Control Optim. 21 (1983) 462-471. [CrossRef] [MathSciNet]
  22. E.D. Sontag and H. Sussmann, Nonsmooth Control Lyapunov Functions, Proc. IEEE Conf. Decision and Control, New Orleans, IEEE Publications (1995) 2799-2805.