Free access
Volume 4, 1999
Page(s) 137 - 158
Published online 15 August 2002
  1. R. Bryant, S. Chern, R. Gardner, H. Goldschmidt and P. Griffiths, Exterior Differential Systems, MSRI Publications 18, Springer-Verlag, New York (1991).
  2. E. Cartan, Les systèmes de Pfaff à cinq variables et les équations aux dérivées partielles du second ordre. Ann. Ec. Norm., XXVII. 3 (1910) 109-192.
  3. M. Gaspar, Sobre la clasificacion de sistemas de Pfaff en bandera, in: Proceedings of 10th Spanish-Portuguese Conference on Math., Univ. of Murcia (1985) 67-74 (in Spanish).
  4. M. Gaspar, A. Kumpera and C. Ruiz, Sur les systèmes de Pfaff en drapeau. An. Acad. Brasil. Cienc. 55 (1983) 225-229. [MathSciNet]
  5. A. Giaro, A. Kumpera and C. Ruiz, Sur la lecture correcte d'un résultat d'Elie Cartan. C. R. Acad. Sci. Paris 287 (1978) 241-244.
  6. F. Jean, The car with N trailers: characterisation of the singular configurations. ESAIM: Contr. Optim. Cal. Var. (URL: 1 (1996) 241-266. [CrossRef] [EDP Sciences]
  7. A. Kumpera and C. Ruiz, Sur l'équivalence locale des systèmes de Pfaff en drapeau, in: Monge -Ampère Equations and Related Topics, Inst. Alta Math., Rome (1982) 201-248.
  8. J.- P. Laumond, Controllability of a multibody mobile robot. in: Proc. of the International Conference on Advanced Robotics and Automation, Pisa (1991) 1033-1038.
  9. J.- P. Laumond and T. Simeon, Motion planning for a two degrees of freedom mobile robot with towing, LAAS/CNRS Report 89 148, Toulouse (1989).
  10. P. Mormul, Local models of 2-distributions in 5 dimensions everywhere fulfilling the Goursat condition (preprint Rouen, 1994).
  11. P. Mormul, Local classification of rank -2 distributions satisfying the Goursat condition in dimension 9, preprint 582, Inst. of Math., Polish Acad. Sci., Warsaw, January (1998).
  12. R. Murray, Nilpotent bases for a class of nonintegrable distributions with applications to trajectory generation for nonholonomic systems. Math. Control Signals Systems 7 (1994) 58-75. [CrossRef] [MathSciNet]
  13. M. Zhitomirskii, Normal forms of germs of distributions with a fixed segment of growth vector (English translation). Leningrad Math. J. 2 (1991) 1043-1065. [MathSciNet]
  14. M. Zhitomirskii, Singularities and normal forms of smooth distributions, in: Geometry in Nonlinear Control and Differential Inclusions, Banach Center Publications, Vol. 32, Warsaw (1995) 395-409.
  15. M. Zhitomirskii, Rigid and abnormal line subdistributions of 2-distributions. J. Dyn. Control Systems 1 (1995) 253-294. [CrossRef]