Free access
Issue
ESAIM: COCV
Volume 5, 2000
Page(s) 529 - 538
DOI http://dx.doi.org/10.1051/cocv:2000120
Published online 15 August 2002
  1. R. Choksi and I. Fonseca, Bulk and interfacial energy densities for structured deformations of continua. Arch. Rational Mech. Anal. 138 (1997) 37-103. [CrossRef] [MathSciNet]
  2. B. Dacorogna, Direct Methods in the Calculus of Variations. Springer-Verlag, Berlin (1989).
  3. E. De Giorgi and L. Ambrosio, Un nuovo tipo di funzionale del calcolo delle variazioni. Atti. Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Suppl. 82 (1988) 199-210.
  4. G. Del Piero and D.R. Owen, Structured deformations of continua. Arch. Rational Mech. Anal. 124 (1993) 99-155. [CrossRef] [MathSciNet]
  5. L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992).
  6. I. Fonseca, S. Müller and P. Pedregal, Analysis of concentration and oscillation effects generated by gradients. SIAM J. Math. Anal. 29 (1998) 736-756. [CrossRef] [MathSciNet]
  7. J. Kristensen, Lower semicontinuity in spaces of weakly differentiable functions. Math. Ann. 313 (1999) 653-710. [CrossRef] [MathSciNet]
  8. C.J. Larsen, Quasiconvexification in W1,1 and optimal jump microstructure in BV relaxation. SIAM J. Math. Anal. 29 (1998) 823-848. [CrossRef] [MathSciNet]
  9. S. Müller, On quasiconvex functions which are homogeneous of degree 1. Indiana Univ. Math. J. 41 (1992) 295-301. [CrossRef] [MathSciNet]