Free access
Issue
ESAIM: COCV
Volume 7, 2002
Page(s) 407 - 419
DOI http://dx.doi.org/10.1051/cocv:2002061
Published online 15 September 2002
  1. A.K. Ben-Naoum, C. Troestler and M. Willem, Extrema problems with critical Sobolev exponents on unbounded domains. Nonlinear Anal. TMA 26 (1996) 823-833. [CrossRef]
  2. G. Bianchi, J. Chabrowski and A. Szulkin, On symmetric solutions of an elliptic equation with a nonlinearity involving critical Sobolev exponent. Nonlinear Anal. TMA 25 (1995) 41-59. [CrossRef]
  3. H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36 (1983) 437-476. [CrossRef] [MathSciNet]
  4. G. Cerami, S. Solimini and M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents. J. Funct. Anal. 69 (1986) 289-306. [CrossRef] [MathSciNet]
  5. M. Del Pino and P. Felmer, Least energy solutions for elliptic equations in unbounded domains. Proc. Roy. Soc. Edinburgh Sect. A 126 (1996) 195-208. [MathSciNet]
  6. D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Second Edition. Springer, New York, Grundlehren Math. Wiss. 224 (1983).
  7. P.-L. Lions, The concentration-compactness principle in the Calculus of Variations. The limit case, Part 2. Rev. Mat. Iberoamericana 1 (1985) 45-121.
  8. M. Ramos, Z.-Q. Wang and M. Willem, Positive solutions for elliptic equations with critical growth in unbounded domains, in Calculus of Variations and Differential Equations, edited by A. Ioffe, S. Reich and I. Shafrir. Chapman & Hall/CRC, Boca Raton, FL, Res. Notes in Math. Ser. 140 (2000) 192-199.
  9. I. Schindler and K. Tintarev, Abstract concentration compactness and elliptic equations on unbounded domains, in Prog. Nonlinear Differential Equations Appl., Vol. 43, edited by M.R. Grossinho, M. Ramos, C. Rebelo and L. Sanchez. Birkhäuser, Boston (2001) 369-380.
  10. G. Tarantello, Nodal solutions of semilinear elliptic equations with critical exponent. Differential Integral Equations 5 (1992) 25-42. [MathSciNet]
  11. M. Willem, Minimax theorems, in Prog. Nonlinear Differential Equations Appl., Vol. 24. Birkhäuser, Boston (1996).
  12. X.-P. Zhu, Multiple entire solutions of a semilinear elliptic equations. Nonlinear Anal. TMA 12 (1998) 1297-1316.