Free access
Issue
ESAIM: COCV
Volume 8, 2002
A tribute to JL Lions
Page(s) 603 - 619
DOI http://dx.doi.org/10.1051/cocv:2002036
Published online 15 August 2002
  1. P.G. Ciarlet, Mathematical elasticity. Vol. I. Three-dimensional elasticity. Vol. II: Theory of plates. Vol. III: Theory of shells. North-Holland Publishing Co., Amsterdam (1988, 1997, 2000).
  2. D. Cioranescu, O.A. Oleinik and G. Tronel, On Korn's inequalities for frame type structures and junctions. C. R. Acad. Sci. Paris Sér. I Math. 309 (1989) 591-596.
  3. L. Desvillettes, Convergence to equilibrium in large time for Boltzmann and BGK equations. Arch. Rational Mech. Anal. 110 (1990) 73-91. [CrossRef] [MathSciNet]
  4. L. Desvillettes and C. Villani, On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: The Boltzmann equation. Work in progress.
  5. G. Duvaut and J.-L. Lions, Inequalities in mechanics and physics. Springer-Verlag, Berlin (1976). Translated from the French by C.W. John, Grundlehren der Mathematischen Wissenschaften, 219.
  6. K.O. Friedrichs, On the boundary-value problems of the theory of elasticity and Korn's inequality. Ann. Math. 48 (1947) 441-471. [CrossRef]
  7. S. Gallot, D. Hulin and J. Lafontaine, Riemannian geometry, Second Edition. Springer-Verlag, Berlin (1990).
  8. J. Gobert, Une inégalité fondamentale de la théorie de l'élasticité. Bull. Soc. Roy. Sci. Liège 31 (1962) 182-191.
  9. H. Grad, On Boltzmann's H-theorem. J. Soc. Indust. Appl. Math. 13 (1965) 259-277. [CrossRef] [MathSciNet]
  10. C.O. Horgan, Korn's inequalities and their applications in continuum mechanics. SIAM Rev. 37 (1995) 491-511. [CrossRef] [MathSciNet]
  11. C.O. Horgan and L.E. Payne, On inequalities of Korn, Friedrichs and Babuska-Aziz. Arch. Rational Mech. Anal. 82 (1983) 165-179. [MathSciNet]
  12. R.V. Kohn, New integral estimates for deformations in terms of their nonlinear strains. Arch. Rational Mech. Anal. 78 (1982) 131-172. [CrossRef] [MathSciNet]
  13. A. Korn, Solution générale du problème d'équilibre dans la théorie de l'élasticité, dans le cas où les effets sont donnés à la surface. Ann. Fac. Sci. Univ. Toulouse 10 (1908) 165-269.
  14. J.A. Nitsche, On Korn's second inequality. RAIRO: Anal. Numér. 15 (1981) 237-248. [MathSciNet]
  15. V.A. Kondratiev and O.A. Oleinik, On Korn's inequalities. C. R. Acad. Sci. Paris Sér. I Math. 308 (1989) 483-487.
  16. E.I. Ryzhak, Korn's constant for a parallelepiped with a free face or pair of faces. Math. Mech. Solids 4 (1999) 35-55. [CrossRef] [MathSciNet]
  17. C. Villani, Topics in mass transportation. Preprint (2002).
  18. Y. Shizuta and K. Asano, Global solutions of the Boltzmann equation in a bounded convex domain. Proc. Japan Acad. Ser. A Math. Sci. 53 (1977) 3-5. [CrossRef] [MathSciNet]