Free access
Issue
ESAIM: COCV
Volume 8, 2002
A tribute to JL Lions
Page(s) 693 - 702
DOI http://dx.doi.org/10.1051/cocv:2002030
Published online 15 August 2002
  1. E.J. Anderson and P. Nash, Linear Programming in Infinite Dimensional Spaces. Wiley (1987).
  2. D. Bertsimas and J. Tsitsiklis, Introduction to Linear Optimization. Athena Scientific (1997).
  3. L.C. Evans, Partial differential equations and Monge-Kantorovich mass transfer (survey paper). Available at the website of LCE, at math.berkeley.edu
  4. L.C. Evans, Some new PDE methods for weak KAM theory. Calc. Var. Partial Differential Equations (to appear).
  5. L.C. Evans and D. Gomes, Effective Hamiltonians and averaging for Hamiltonian dynamics I. Arch. Rational Mech. Anal. 157 (2001) 1-33. [CrossRef] [MathSciNet]
  6. A. Fathi, Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens. C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 1043-1046.
  7. A. Fathi, Solutions KAM faibles conjuguées et barrières de Peierls. C. R. Acad. Sci. Paris Sér. I Math. 325 (1997) 649-652.
  8. A. Fathi, Weak KAM theory in Lagrangian Dynamics, Preliminary Version. Lecture Notes (2001).
  9. J. Franklin, Methods of Mathematical Economics. SIAM, Classics in Appl. Math. 37 (2002).
  10. D. Gomes, Numerical methods and Hamilton-Jacobi equations (to appear).
  11. P. Lax, Linear Algebra. John Wiley (1997).
  12. P.-L. Lions, G. Papanicolaou and S.R.S. Varadhan, Homogenization of Hamilton-Jacobi equations. CIRCA (1988) (unpublished).
  13. J. Mather, Minimal measures. Comment. Math Helvetici 64 (1989) 375-394. [CrossRef] [MathSciNet]
  14. J. Mather, Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z. 207 (1991) 169-207. [CrossRef] [MathSciNet]
  15. J. Mather and G. Forni, Action minimizing orbits in Hamiltonian systems. Transition to Chaos in Classical and Quantum Mechanics, edited by S. Graffi. Sringer, Lecture Notes in Math. 1589 (1994).