Free access
Issue
ESAIM: COCV
Volume 8, 2002
A tribute to JL Lions
Page(s) 775 - 799
DOI http://dx.doi.org/10.1051/cocv:2002042
Published online 15 August 2002
  1. A. Alonso and A. Valli, An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations. Math. Comp. 68 (1999) 607-631. [CrossRef] [MathSciNet]
  2. M. Belishev and A. Glasman, Boundary control of the Maxwell dynamical system: Lack of controllability by topological reason. ESAIM: COCV 5 (2000) 207-218. [CrossRef] [EDP Sciences]
  3. J.-D. Benamou, Décomposition de domaine pour le contrôle de systèmes gouvernés par des équations d'évolution. C. R. Acad. Sci Paris Sér. I Math. 324 (1997) 1065-1070.
  4. J.-D. Benamou, Domain decomposition, optimal control of systems governed by partial differential equations and synthesis of feedback laws. J. Opt. Theory Appl. 102 (1999) 15-36. [CrossRef]
  5. J.-D. Benamou and B. Desprès, A domain decomposition method for the Helmholtz equation and related optimal control problems. J. Comp. Phys. 136 (1997) 68-82. [CrossRef]
  6. M. Gander, L. Halpern and F. Nataf, Optimal Schwarz waveform relaxation for the one dimensional wave equation. École Polytechnique, Palaiseau, Rep. 469 (2001).
  7. M. Heinkenschloss, Time domain decomposition iterative methods for the solution of distributed linear quadratic optimal control problems (submitted).
  8. J.E. Lagnese, A nonoverlapping domain decomposition for optimal boundary control of the dynamic Maxwell system, in Control of Nonlinear Distributed Parameter Systems, edited by G. Chen, I. Lasiecka and J. Zhou. Marcel Dekker (2001) 157-176.
  9. J.E. Lagnese, Exact boundary controllability of Maxwell's equation in a general region. SIAM J. Control Optim. 27 (1989) 374-388. [CrossRef] [MathSciNet]
  10. J.E. Lagnese and G. Leugering, Dynamic domain decomposition in approximate and exact boundary control problems of transmission for the wave equation. SIAM J. Control Optim. 38/2 (2000) 503-537.
  11. J.E. Lagnese, A singular perturbation problem in exact controllability of the Maxwell system. ESAIM: COCV 6 (2001) 275-290. [CrossRef] [EDP Sciences]
  12. J.-L. Lions, Virtual and effective control for distributed parameter systems and decomposition of everything. J. Anal. Math. 80 (2000) 257-297. [CrossRef] [MathSciNet]
  13. J.-L. Lions, Decomposition of energy space and virtual control for parabolic systems, in 12th Int. Conf. on Domain Decomposition Methods, edited by T. Chan, T. Kako, H. Kawarada and O. Pironneau (2001) 41-53.
  14. J.-L. Lions and O. Pironneau, Domain decomposition methods for C.A.D. C. R. Acad. Sci. Paris 328 (1999) 73-80.
  15. Kim Dang Phung, Contrôle et stabilisation d'ondes électromagnétiques. ESAIM: COCV 5 (2000) 87-137. [CrossRef] [EDP Sciences]
  16. J.E. Santos, Global and domain decomposed mixed methods for the solution of Maxwell's equations with applications to magneotellurics. Num. Meth. for PDEs 14/4 (2000) 407-438.
  17. H. Schaefer, Über die Methode sukzessiver Approximationen. Jber Deutsch. Math.-Verein 59 (1957) 131-140. [MathSciNet]