Free access
Volume 10, Number 4, October 2004
Page(s) 634 - 655
Published online 15 October 2004
  1. R. Abraham and J. Robbin, Transversal mappings and flows. W.A. Benjamin, Inc. (1967).
  2. A. Agrachev, El-A. Chakir, El-H. and J.P. Gauthier, Sub-Riemannian metrics on R3, in Geometric Control and non-holonomic mechanics, Mexico City (1996) 29-76, Canad. Math. Soc. Conf. Proc. 25, Amer. Math. Soc., Providence, RI (1998).
  3. A. Agrachev and J.P. Gauthier, Sub-Riemannian Metrics and Isoperimetric Problems in the Contact case, L.S. Pontriaguine, 90th Birthday Commemoration, Contemporary Mathematics 64 (1999) 5-48 (Russian). English version: J. Math. Sci. 103, 639-663.
  4. M.W. Hirsch, Differential Topology. Springer-Verlag (1976).
  5. El-A. Chakir, El-H., J.P. Gauthier and I. Kupka, Small Sub-Riemannian balls on R3. J. Dynam. Control Syst. 2 (1996) 359-421. [CrossRef]
  6. G. Charlot, Quasi-Contact sub-Riemannian Metrics, Normal Form in R2n, Wave front and Caustic in R4. Acta Appl. Math. 74 (2002) 217-263. [CrossRef] [MathSciNet]
  7. K. Goldberg, D. Halperin, J.C. Latombe and R. Wilson, Algorithmic foundations of robotics. AK Peters, Wellesley, Mass. (1995).
  8. Mc Pherson Goreski, Stratified Morse Theory. Springer-Verlag, New York (1988).
  9. M. Gromov, Carnot-Caratheodory spaces seen from within, in Sub-Riemannian geometry. A. Bellaiche, J.J. Risler Eds., Birkhauser (1996) 79-323.
  10. F. Jean, Complexity of nonholonomic motion planning. Internat. J. Control 74 (2001) 776-782. [CrossRef] [MathSciNet]
  11. F. Jean, Entropy and Complexity of a Path in Sub-Riemannian Geometry. ESAIM: COCV 9 (2003) 485-508. [CrossRef] [EDP Sciences]
  12. F. Jean and E. Falbel, Measures and transverse paths in Sub-Riemannian Geometry. J. Anal. Math. 91 (2003) 231-246. [CrossRef] [MathSciNet]
  13. T. Kato, Perturbation theory for linear operators. Springer-Verlag (1966) 120-122.
  14. I. Kupka, Géometrie sous-Riemannienne, in Séminaire Bourbaki, 48e année, No. 817 (1995-96) 1-30.
  15. G. Lafferiere and H. Sussmann, Motion Planning for controllable systems without drift, in Proc. of the 1991 IEEE Int. Conf. on Robotics and Automation (1991).