Free access
Volume 13, Number 1, January-March 2007
Page(s) 35 - 71
Published online 14 February 2007
  1. A. Aftalion and R.L. Jerrard, On the shape of vortices for a rotating Bose-Einstein condensate. Phys. Rev. A 66 (2002) 023611. [CrossRef]
  2. A. Aftalion and R. L. Jerrard, Properties of a single vortex solution in a rotating Bose-Einstein condensate. C. R. Acad. Sci. Paris Ser. I 336 (2003) 713–718.
  3. A. Aftalion and T. Rivière, Vortex energy and vortex bending for a rotating Bose-Einstein condensate. Phys. Rev. A 64 (2001) 043611. [CrossRef]
  4. G. Alberti, S. Baldo and G. Orlandi, Functions with prescribed singularities. J. Eur. Math. Soc. 5 (2003) 275–311. [CrossRef] [MathSciNet]
  5. G. Alberti, S. Baldo and G. Orlandi, Variational convergence for functionals of Ginzburg-Landau type. Indiana Univ. Math J. 54 (2005) 1411–1472. [CrossRef] [MathSciNet]
  6. N. Andre and I. Shafrir, Asymptotic behavior of minimizers for the Ginzburg-Landau functional with weight. I, II. Arch. Rational Mech. Anal. 142 (1998) 45–73, 75–98. [CrossRef] [MathSciNet]
  7. F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices. Birkhauser, New-York (1994).
  8. H. Brezis, J.M. Coron, and E.H. Lieb, Harmonic maps with defects. Comm. Math. Phys. 107 (1986) 649–705. [CrossRef] [MathSciNet]
  9. L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, London (1992).
  10. H. Federer, Geometric Measure Theory. Springer-Verlag, Berlin (1969).
  11. M. Giaquinta, G. Modica and J. Soucek, Cartesian Currents in the Calculus of Variations. I, II. Springer-Verlag, New York (1998).
  12. R.L. Jerrard and H.M. Soner, The Jacobian and the Ginzburg-Landau functional. Cal. Var. 14 (2002) 151–191. [CrossRef]
  13. R.L. Jerrard, A. Montero, and P. Sternberg, Local minimizers of the Ginzburg-Landau energy with magnetic field in three dimensions. Comm. Math. Phys. 249 (2004) 549–577. [MathSciNet]
  14. R.V. Kohn and P. Sternberg, Local minimizers and singular perturbations. Proc. Royal Soc. Edin. 111A (1989) 69–84.
  15. L. Lassoued and P. Mironescu, Ginzburg-Landau type energy with discontinuous constraint. J. Anal. Math. 77 (1999) 1–26. [CrossRef] [MathSciNet]
  16. A. Montero, P. Sternberg, and W. Ziemer, Local minimizers with vortices to the Ginzburg-Landau system in 3-d. Comm. Pure Appl. Math 57 (2004) 99–125. [CrossRef] [MathSciNet]
  17. C. Raman, J. R. Abo-Shaeer, J. M. Vogels, K. Xu and W. Ketterle, Vortex nucleation in a stirred Bose-Einstein condensate. Phys. Rev. Lett. 87 (2001) 210402. [CrossRef] [PubMed]
  18. T. Rivière, Line vortices in the Formula -Higgs model. Cont. Opt. Calc. Var. 1 (1996) 77–167. [CrossRef] [EDP Sciences]
  19. P. Rosenbuch, V. Bretin, and J. Dalibard, Dynamics of a single vortex line in a Bose-Einstein condensate. Phys. Rev. Lett. 89 (2002) 200403. [CrossRef] [PubMed]
  20. E. Sandier and S. Serfaty. A product estimate for Ginzburg-Landau and corollaries. J. Funct. Anal. 211 (2004) 219–244.