Free access
Issue
ESAIM: COCV
Volume 13, Number 1, January-March 2007
Page(s) 93 - 106
DOI http://dx.doi.org/10.1051/cocv:2006017
Published online 14 February 2007
  1. T. Abdellaoui and H. Heinich, Sur la distance de deux lois dans le cas vectoriel. C.R. Acad. Sci. Paris Sér. I Math. 319 (1994) 397–400.
  2. N. Ahmad, The geometry of shape recognition via the Monge-Kantorovich optimal transport problem. Ph.D. dissertation (2004).
  3. L.A. Caffarelli and V.I. Oliker, Weak solutions of one inverse problem in geometric optics. Preprint (1994).
  4. L.A. Caffarelli and S. Kochengin and V.I. Oliker, On the numerical solution of the problem of reflector design with given far-field scattering data. Cont. Math. 226 (1999) 13–32.
  5. W. Gangbo, Quelques problèmes d'analyse non convexe. Habilitation à diriger des recherches en mathématiques. Université de Metz (Janvier 1995).
  6. W. Gangbo and R.J. McCann, The geometry of optimal transportation. Acta Math. 177 (1996) 113–161. [CrossRef] [MathSciNet]
  7. W. Gangbo and R. McCann, Shape recognition via Wasserstein distance. Quart. Appl. Math. 58 (2000) 705–737. [MathSciNet]
  8. T. Glimm and V.I. Oliker, Optical design of single reflector systems and the Monge-Kantorovich mass transfer problem. J. Math. Sci. 117 (2003) 4096–4108. [CrossRef] [MathSciNet]
  9. T. Glimm and V.I. Oliker, Optical design of two-reflector systems, the Monge-Kantorovich mass transfer problem and Fermat's principle. Indiana Univ. Math. J. 53 (2004) 1255–1278. [CrossRef] [MathSciNet]
  10. Pengfei Guan and Xu-Jia Wang, On a Monge-Ampère equation arising in geometric optics J. Differential Geometry 48 (1998) 205–223.
  11. H.G. Kellerer, Duality theorems for marginal problems. Z. Wahrsch. Verw. Gebiete 67 (1984) 399–432. [CrossRef] [MathSciNet]
  12. B.E. Kinber, On two reflector antennas. Radio Eng. Electron. Phys. 7 (1962) 973–979.
  13. M. Knott and C.S. Smith, On the optimal mapping of distributions. J. Optim. Theory Appl. 43 (1984) 39–49. [CrossRef] [MathSciNet]
  14. E. Newman and V.I. Oliker, Differential-geometric methods in design of reflector antennas. Symposia Mathematica 35 (1994) 205–223.
  15. A.P. Norris and B.S. Westcott, Computation of reflector surfaces for bivariate beamshaping in the elliptic case. J. Phys. A: Math. Gen 9 (1976) 2159–2169. [CrossRef]
  16. V.I. Oliker and P. Waltman, Radially symmetric solutions of a Monge-Ampere equation arising in a reflector mapping problem. Proc. UAB Int. Conf. on Diff. Equations and Math. Physics, edited by I. Knowles and Y. Saito, Springer. Lect. Notes Math. 1285 (1987) 361–374. [CrossRef]
  17. V.I. Oliker, On the geometry of convex reflectors. PDE's, Submanifolds and Affine Differential Geometry, Banach Center Publications 57 (2002) 155–169.
  18. R.T. Rockafellar, Convex Analysis. Princeton University Press, Princeton (1970).
  19. L. Rüschendorf, On c-optimal random variables. Appl. Stati. Probab. Lett. 27 (1996) 267–270. [CrossRef] [MathSciNet]
  20. C. Smith and M. Knott, On Hoeffding-Fréchet bounds and cyclic monotone relations. J. Multivariate Anal. 40 (1992) 328–334. [CrossRef] [MathSciNet]
  21. X.-J. Wang, On design of a reflector antenna. Inverse Problems 12 (1996) 351–375. [CrossRef] [MathSciNet]
  22. X.-J. Wang, On design of a reflector antenna II. Calculus of Variations and PDE's 20 (2004) 329–341. [CrossRef]
  23. B.S. Westcott, Shaped Reflector Antenna Design. Research Studies Press, Letchworth, UK (1983).
  24. S.T. Yau, Open problems in geometry, in Differential Geometry. Part 1: Partial Differential Equations on Manifolds (Los Angeles, 1990), R. Greene and S.T. Yau Eds., Proc. Sympos. Pure Math., Amer. Math. Soc. 54 (1993) 1–28.