Free access
Issue
ESAIM: COCV
Volume 13, Number 4, October-December 2007
Page(s) 750 - 775
DOI http://dx.doi.org/10.1051/cocv:2007028
Published online 20 July 2007
  1. J. Bonnans, Second order analysis for control constrained optimal control problems of semilinear elliptic systems. Appl. Math. Optim. 38 (1998) 303–325. [CrossRef] [MathSciNet]
  2. H. Brezis, Analyse fonctionelle. Masson, Paris (1983).
  3. E. Casas and M. Mateos, Second order sufficient optimality conditions for semilinear elliptic control problems with finitely many state constraints. SIAM J. Control Optim. 40 (2002) 1431–1454. [CrossRef] [MathSciNet]
  4. E. Casas, F. Tröltzsch and A. Unger, Second order sufficient optimality conditions for a nonlinear elliptic control problem. J. Anal. Appl. 15 (1996) 687–707.
  5. A.L. Dontchev, W.W. Hager, A.B. Poore and B. Yang, Optimality, stability, and convergence in optimal control. Appl. Math. Optim. 31 (1995) 297–326. [CrossRef] [MathSciNet]
  6. O. Klein, P. Philip and J. Sprekels, Modeling and simulation of sublimation growth of SiC bulk single crystals. Interfaces Free Boundaries 6 (2004) 295–314. [CrossRef]
  7. M. Laitinen and T. Tiihonen, Conductive-radiative heat transfer in grey materials. Quart. Appl. Math. 59 (2001) 737–768. [MathSciNet]
  8. C. Meyer, P. Philip, and F. Tröltzsch, Optimal control of a semilinear PDE with nonlocal radiation interface conditions. SIAM J. Control Optim. 45 (2006) 699–721.
  9. H.-J. Rost, D. Siche, J. Dolle, W. Eiserbeck, T. Müller, D. Schulz, G. Wagner and J. Wollweber, Influence of different growth parameters and related conditions on 6H-SiC crystals grown by the modified Lely method. Mater. Sci. Eng. B 61-62 (1999) 68–72. [CrossRef]
  10. T. Tiihonen, A nonlocal problem arising from heat radiation on non-convex surfaces. Eur. J. App. Math. 8 (1997) 403–416.
  11. T. Tiihonen, Stefan-Boltzmann radiation on non-convex surfaces. Math. Meth. Appl. Sci. 20 (1997) 47–57. [CrossRef] [MathSciNet]
  12. F. Tröltzsch and D. Wachsmuth, Second-order sufficient optimality conditions for the optimal control of Navier-Stokes equations. ESAIM: COCV 12 (2006) 93–119. [CrossRef] [EDP Sciences]