Free access
Volume 14, Number 4, October-December 2008
Page(s) 864 - 878
Published online 30 January 2008
  1. L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variations and free discontinuity problems, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press (2000).
  2. M. Bernot, Irrigation and Optimal Transport. Ph.D. thesis, École Normale Supérieure de Cachan, France (2005). Available at ~mbernot.
  3. M. Bernot, V. Caselles and J.-M. Morel, Traffic plans. Publ. Mat. 49 (2005) 417–451. [CrossRef] [MathSciNet]
  4. M. Bernot, V. Caselles and J.-M. Morel, The structure of branched transportation networks. Calc. Var. Partial Differential Equations (online first). DOI: 10.1007/s00526-007-0139-0.
  5. A. Brancolini, G. Buttazzo and F. Santambrogio, Path functionals over Wasserstein spaces. J. EMS 8 (2006) 414–434.
  6. W. D'Arcy Thompson, On Growth and Form. Cambridge University Press (1942).
  7. R.M. Dudley, Real Analysis and Probability. Cambridge University Press (2002).
  8. E.N. Gilbert, Minimum cost communication networks. Bell System Tech. J. 46 (1967) 2209–2227.
  9. L. Kantorovich, On the transfer of masses. Dokl. Acad. Nauk. USSR 37 (1942) 7–8.
  10. F. Maddalena, S. Solimini and J.M. Morel, A variational model of irrigation patterns. Interfaces and Free Boundaries 5 (2003) 391–416. [CrossRef] [MathSciNet]
  11. G. Monge, Mémoire sur la théorie des déblais et de remblais. Histoire de l'Académie Royale des Sciences de Paris (1781) 666–704.
  12. J.D. Murray, Mathematical Biology, Biomathematics Texts 19. Springer (1993).
  13. A.M. Turing, The chemical basis of morphogenesis. Phil. Trans. Soc. Lond. B237 (1952) 37–72.
  14. C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics 58. American Mathematical Society, Providence, RI (2003).
  15. Q. Xia, Optimal paths related to transport problems. Commun. Contemp. Math. 5 (2003) 251–279. [CrossRef] [MathSciNet]