Free access
Volume 15, Number 3, July-September 2009
Page(s) 676 - 711
Published online 19 July 2008
  1. F. Alouges and A. Soyeur, On global weak solutions for Landau Lifschitz equations: existence and nonuniqueness. Nonlinear Anal. Theory Meth. Appl. 18 (1992) 1071–1084. [CrossRef]
  2. M. Bauer, J. Fassbender, B. Hillebrands and R.L. Stamps, Switching behavior of a Stoner particle beyond the relaxation time limit. Phys. Rev. B 61 (2000) 3410–3416. [CrossRef]
  3. G. Bertotti and I. Mayergoyz, The Science of Hysteresis. Academic Press (2006).
  4. W.F. Brown, Micromagnetics. Interscience Publishers (1963).
  5. G. Carbou and P. Fabrie, Regular solutions for Landau-Lifschitz equation in a bounded domain. Diff. Integral Eqns. 14 (2001) 219–229.
  6. G. Carbou, S. Labbé and E. Trélat, Control of travelling walls in a ferromagnetic nanowire. Discrete Contin. Dyn. Syst. Ser. S 1 (2008) 51–59. [MathSciNet]
  7. K.-C. Chang, W.Y. Ding and R. Ye, Finite-time blow-up of the heat flow of harmonic maps from surfaces. J. Differ. Geom. 36 (1992) 507–515.
  8. J.-M. Coron, Nonuniqueness for the heat flow of harmonic maps. Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1992) 335–344.
  9. J.-M. Coron and J.-M. Ghidaglia, Explosion en temps fini pour le flot des applications harmoniques. C. R. Acad. Sci. Paris Sér. I Math. 308 (1989) 339–344.
  10. A. DeSimone, Hysteresis and imperfection sensitivity in small ferromagnetic particles. Meccanica 30 (1995) 591–603. [CrossRef] [MathSciNet]
  11. A. Freire, Uniqueness for the harmonic map flow in two dimensions. Calc. Var. Partial Differential Equations 3 (1995) 95–105. [CrossRef] [MathSciNet]
  12. A. Hubert and R. Schäfer, Magnetic Domains: The Analysis of Magnetic Microstructures. Springer (1998).
  13. J. Jost, Ein Existenzbeweis für harmonische Abbildungen, die ein Dirichletproblem lösen, mittels der Methode des Wärmeflusses. Manuscripta Math. 34 (1981) 17–25. [CrossRef] [MathSciNet]
  14. R. Kikuchi, On the minimum of magnetization reversal time. J. Appl. Phys. 27 (1956) 1352–1357. [NASA ADS] [CrossRef] [MathSciNet] [PubMed]
  15. S. Labbé, Simulation numérique du comportement hyperfréquence des matériaux ferromagnétiques. Ph.D. thesis, Université Paris XIII, France (1998).
  16. J.C. Mallinson, Damped gyromagnetic switching. IEEE Trans. Magn. 36 (2000) 1976–1981. [CrossRef]
  17. J.-C. Mitteau, Sur les applications harmoniques. J. Differ. Geom. 9 (1974) 41–54.
  18. A. Visintin, On Landau-Lifschitz equations for ferromagnetism. Japan J. Appl. Math. 2 (1985) 69–84. [CrossRef] [MathSciNet]