Free access
Issue
ESAIM: COCV
Volume 16, Number 1, January-March 2010
Page(s) 194 - 205
DOI http://dx.doi.org/10.1051/cocv:2008069
Published online 19 December 2008
  1. M.S. Ashbaugh, E.M. Harrell and R. Svirsky, On minimal and maximal eigenvalue gaps and their causes. Pacific J. Math. 147 (1991) 1–24.
  2. D. Bucur and G. Buttazzo, Variational Methods in Shape Optimization Problems, Progress in Nonlinear Differential Equations and Their Applications 65. Birkhäuser, Basel, Boston (2005).
  3. D. Bucur and T. Chatelain, Strict monotonicity of the second eigenvalue of the Laplace operator on relaxed domain. Bull. Appl. Comp. Math. 1510–1566 (1998) 115–122.
  4. D. Bucur and A. Henrot, Minimization of the third eigenvalue of the Dirichlet Laplacian. Proc. Roy. Soc. London 456 (2000) 985–996. [CrossRef]
  5. G. Buttazzo and G. Dal Maso, Shape optimization for Dirichlet problems: relaxed formulation and optimality conditions. Appl. Math. Optim. 23 (1991) 17–49. [CrossRef] [MathSciNet]
  6. G. Buttazzo, N. Varchon and H. Zoubairi, Optimal measures for elliptic problems. Annali Mat. Pur. Appl. 185 (2006) 207–221. [CrossRef] [MathSciNet]
  7. R. Courant and D. Hilbert, Methods of Mathematical Physics. Interscience Publishers (1953).
  8. G. Dal Maso, Γ-convergence and µ-capacities. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987) 423–464. [MathSciNet]
  9. G. Dal Maso, An introduction to Γ-convergence. Birkhäuser, Boston (1993).
  10. G. Dal Maso and U. Mosco, Wiener's criterion and Γ-convergence. Appl. Math. Optim. 15 (1987) 15–63. [CrossRef] [MathSciNet]
  11. L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics. CRC Press, Boca Raton (1992).
  12. A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators. Birkhäuser Verlag, Basel, Boston, Berlin (2006).
  13. T. Kato, Perturbation Theory for Linear Operators. Springer-Verlag (1980).
  14. N. Varchon, Optimal measures for nonlinear cost functionals. Appl. Mat. Opt. 54 (2006) 205–221. [CrossRef] [MathSciNet]
  15. W.P. Ziemer, Weakly Differentiable Functions. Springer-Verlag, Berlin (1989).