Free access
Issue
ESAIM: COCV
Volume 16, Number 3, July-September 2010
Page(s) 503 - 522
DOI http://dx.doi.org/10.1051/cocv/2009016
Published online 02 July 2009
  1. J.-J. Alibert and J.-P. Raymond, Boundary control of semilinear elliptic equations with discontinuous leading coefficients and unbounded controls. Numer. Funct. Anal. Optim. 3/4 (1997) 235–250.
  2. E. Casas, Control of an elliptic problem with pointwise state contraints. SIAM J. Contr. Opt. 4 (1986) 1309–1322. [CrossRef] [MathSciNet]
  3. P. Deuflhard, Newton Methods for Nonlinear Problems. Affine Invariance and Adaptive Algorithms, Springer Series in Computational Mathematics 35. Springer-Verlag, Berlin (2004).
  4. M. Hintermüller, Mesh-independence and fast local convergence of a primal-dual activ e–set method for mixed control-state constrained elliptic control problems. ANZIAM Journal 49 (2007) 1–38. [CrossRef] [MathSciNet]
  5. M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13 (2003) 865–888. [CrossRef] [MathSciNet]
  6. M. Hintermüller and K. Kunisch, Feasible and non-interior path-following in constrained minimization with low multiplier regularity. SIAM J. Control Optim. 45 (2006) 1198–1221. [CrossRef] [MathSciNet]
  7. M. Hintermüller and K. Kunisch, Path-following methods for a class of constrained minimization problems in function space. SIAM J. Optim. 17 (2006) 159–187. [CrossRef] [MathSciNet]
  8. M. Hintermüller, F. Tröltzsch and I. Yousept, Mesh-independence of semismooth Newton methods for Lavrentiev-regularized state constrained nonlinear optimal control problems. Numer. Math. 108 (2008) 571–603. [CrossRef] [MathSciNet]
  9. M. Hinze and C. Meyer, Variational discretization of Lavrentiev-regularized state constrained elliptic optimal control problems. Computat. Optim. Appl. (2009), doi: 10.1007/s10589-008-9198-1.
  10. C. Meyer, A. Rösch and F. Tröltzsch, Optimal control of PDEs with regularized pointwise state constraints. Comp. Optim. Appl. 33 (2006) 209–228. [CrossRef] [MathSciNet]
  11. C. Meyer, U. Prüfert and F. Tröltzsch, On two numerical methods for stat e–constrained elliptic control problems. Optim. Method. Softw. 22 (2007) 871–899.
  12. F. Tröltzsch, Regular Lagrange multipliers for control problems with mixed pointwise control-state constraints. SIAM J. Optim. 15 (2004/2005) 616–634 (electronic).
  13. F. Tröltzsch and I. Yousept, A regularization method for the numerical solution of elliptic boundary control problems with pointwise state constraints. Comp. Optim. Control 42 (2009) 43–63.
  14. I. Yousept, Vergleich von Lösungsverfahren zur Behandlung elliptischer Optimalsteuerungsprobleme. Master's thesis, TU-Berlin, Germany (2005).