Free access
Issue
ESAIM: COCV
Volume 16, Number 4, October-December 2010
Page(s) 856 - 886
DOI http://dx.doi.org/10.1051/cocv/2009022
Published online 31 July 2009
  1. F. Alouges, T. Rivière and S. Serfaty, Néel and cross-tie wall energies for planar micromagnetic configurations. ESAIM: COCV 8 (2002) 31–68. [CrossRef] [EDP Sciences]
  2. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs. Oxford University Press, New York (2000).
  3. A. DeSimone, S. Müller, R.V. Kohn and F. Otto, Recent analytical developments in micromagnetics, in The Science of Hysteresis 2, G. Bertotti and I. Mayergoyz Eds., Elsevier Academic Press (2005) 269–381.
  4. A. Hubert and R. Schäfer, Magnetic domains. Springer (1998).
  5. W. Jin and R.V. Kohn, Singular perturbation and the energy of folds. J. Nonlinear Sci. 10 (2000) 355–390. [CrossRef] [MathSciNet]
  6. A. Poliakovsky, Upper bounds for singular perturbation problems involving gradient fields. J. Eur. Math. Soc. 9 (2007) 1–43. [CrossRef]
  7. A. Poliakovsky, Sharp upper bounds for a singular perturbation problem related to micromagnetics. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 6 (2007) 673–701.
  8. A. Poliakovsky, A general technique to prove upper bounds for singular perturbation problems. J. Anal. Math. 104 (2008) 247–290. [CrossRef] [MathSciNet]
  9. A. Poliakovsky, On a variational approach to the Method of Vanishing Viscosity for Conservation Laws. Adv. Math. Sci. Appl. 18 (2008) 429–451. [MathSciNet]
  10. T. Rivière and S. Serfaty, Limiting domain wall energy for a problem related to micromagnetics. Comm. Pure Appl. Math. 54 (2001) 294–338. [CrossRef] [MathSciNet]
  11. T. Rivière and S. Serfaty, Compactness, kinetic formulation and entropies for a problem related to mocromagnetics. Comm. Partial Differential Equations 28 (2003) 249–269. [CrossRef] [MathSciNet]