Free access
Volume 17, Number 1, January-March 2011
Page(s) 1 - 27
Published online 09 October 2009
  1. G.I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7 (1962) 55–129. [CrossRef]
  2. F. Cagnetti, A vanishing viscosity approach to fracture growth in a cohesive zone model with prescribed crack path. Math. Models Methods Appl. Sci. 18 (2008) 1027–1071. [CrossRef] [MathSciNet]
  3. D.L. Cohn, Measure theory. Reprint of the 1980 original, Birkhäuser, Boston, USA (1993).
  4. G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures: existence and approximation results. Arch. Ration. Mech. Anal. 162 (2002) 101–135. [CrossRef] [MathSciNet]
  5. G. Dal Maso and C. Zanini, Quasi-static crack growth for a cohesive zone model with prescribed crack path. Proc. Roy. Soc. Edinburgh Sect. A 137 (2007) 253–279. [CrossRef] [MathSciNet]
  6. G. Dal Maso, G.A. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity. Arch. Ration. Mech. Anal. 176 (2005) 165–225. [CrossRef] [MathSciNet]
  7. G.A. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46 (1998) 1319–1342. [CrossRef] [MathSciNet]
  8. A. Mielke, Evolution of rate-independent systems, in Handbook of differential equations, evolutionary equations 2, C.M. Dafermos and E. Feireisl Eds., Elsevier, Amsterdam, The Netherlands (2005) 461–559.
  9. J. Neveu, Discrete-Parameter Martingales. American Elsevier, Amsterdam, The Netherlands (1975).
  10. M. Valadier, Young measures, in Methods of nonconvex analysis (Varenna, 1989) 1446, Lect. Notes Math., Springer, Berlin, Germany (1990) 152–188.