 C.E. Agnew, Dynamic modeling and control of congestionprone systems. Oper. Res. 24 (1976) 400–419. [CrossRef]
 L. Ambrosio, Transport equation and Cauchy problem for nonsmooth vector fields, in Calculus of variations and nonlinear partial differential equations, Lecture Notes in Math. 1927, Springer, Berlin, Germany (2008) 1–41.
 D. Armbruster, P. Degond and C. Ringhofer, A model for the dynamics of large queuing networks and supply chains. SIAM J. Appl. Math. 66 (2006) 896–920. [CrossRef] [MathSciNet]
 D. Armbruster, D.E. Marthaler, C. Ringhofer, K. Kempf and T.C. Jo, A continuum model for a reentrant factory. Oper. Res. 54 (2006) 933–950. [CrossRef]
 S. BenzoniGavage, R.M. Colombo and P. Gwiazda, Measure valued solutions to conservation laws motivated by traffic modelling. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 462 (2006) 1791–1803. [CrossRef] [MathSciNet]
 S. Bianchini, On the shift differentiability of the flow generated by a hyperbolic system of conservation laws. Discrete Contin. Dynam. Systems 6 (2000) 329–350. [CrossRef] [MathSciNet]
 F. Bouchut and F. James, Onedimensional transport equations with discontinuous coefficients. Nonlinear Anal. 32 (1998) 891–933. [CrossRef] [MathSciNet]
 F. Bouchut and F. James, Differentiability with respect to initial data for a scalar conservation law, in Hyperbolic problems: theory, numerics, applications, Internat. Ser. Numer. Math., Birkhäuser, Basel, Switzerland (1999).
 A. Bressan and G. Guerra, Shiftdifferentiability of the flow generated by a conservation law. Discrete Contin. Dynam. Systems 3 (1997) 35–58. [MathSciNet]
 A. Bressan and M. Lewicka, Shift differentials of maps in BV spaces, in Nonlinear theory of generalized functions (Vienna, 1997), Res. Notes Math. 401, Chapman & Hall/CRC, Boca Raton, USA (1999) 47–61.
 A. Bressan and W. Shen, Optimality conditions for solutions to hyperbolic balance laws, in Control methods in PDEdynamical systems, Contemp. Math. 426, AMS, USA (2007) 129–152.
 C. Canuto, F. Fagnani and P. Tilli, A eulerian approach to the analysis of rendezvous algorithms, in Proceedings of the IFAC World Congress (2008).
 R.M. Colombo and A. Groli, On the optimization of the initial boundary value problem for a conservation law. J. Math. Analysis Appl. 291 (2004) 82–99. [CrossRef]
 R.M. Colombo and M.D. Rosini, Pedestrian flows and nonclassical shocks. Math. Methods Appl. Sci. 28 (2005) 1553–1567. [CrossRef] [MathSciNet]
 R.M. Colombo, M. Mercier and M.D. Rosini, Stability and total variation estimates on general scalar balance laws. Commun. Math. Sci. 7 (2009) 37–65. [MathSciNet]
 R.M. Colombo, G. Facchi, G. Maternini and M.D. Rosini, On the continuum modeling of crowds, in Hyperbolic Problems: Theory, Numerics, Applications 67, Proceedings of Symposia in Applied Mathematics, E. Tadmor, J.G. Liu and A.E. Tzavaras Eds., American Mathematical Society, Providence, USA (2009).
 V. Coscia and C. Canavesio, Firstorder macroscopic modelling of human crowd dynamics. Math. Models Methods Appl. Sci. 18 (2008) 1217–1247. [CrossRef] [MathSciNet]
 M. Gugat, M. Herty, A. Klar and G. Leugering, Conservation law constrained optimization based upon FrontTracking. ESAIM: M2AN 40 (2006) 939–960. [CrossRef] [EDP Sciences]
 R.L. Hughes, A continuum theory for the flow of pedestrians. Transportation Res. Part B 36 (2002) 507–535. [CrossRef]
 U. Karmarkar, Capacity loading and release planning in workinprogess (wip) and leadtimes. J. Mfg. Oper. Mgt. 2 (1989) 105–123.
 S.N. Kružkov, First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81 (1970) 228–255. [MathSciNet]
 M. Marca, D. Armbruster, M. Herty and C. Ringhofer, Control of continuum models of production systems. IEEE Trans. Automat. Contr. (to appear).
 B. Perthame and A.L. Dalibard, Existence of solutions of the hyperbolic KellerSegel model. Trans. Amer. Math. Soc. 361 (2009) 2319–2335. [CrossRef] [MathSciNet]
 S. Ulbrich, A sensitivity and adjoint calculus for discontinuous solutions of hyperbolic conservation laws with source terms. SIAM J. Control Optim. 41 (2002) 740. [CrossRef] [MathSciNet]
 S. Ulbrich, Adjointbased derivative computations for the optimal control of discontinuous solutions of hyperbolic conservation laws. Syst. Contr. Lett. 48 (2003) 313–328. [CrossRef]
 V.I. Yudovič, Nonstationary flows of an ideal incompressible fluid. Ž. Vyčisl. Mat. i Mat. Fiz. 3 (1963) 1032–1066.
Free access
Issue 
ESAIM: COCV
Volume 17, Number 2, AprilJune 2011



Page(s)  353  379  
DOI  http://dx.doi.org/10.1051/cocv/2010007  
Published online  24 March 2010 