Free Access
Issue
ESAIM: COCV
Volume 18, Number 1, January-March 2012
Page(s) 1 - 21
DOI https://doi.org/10.1051/cocv/2010048
Published online 02 December 2010
  1. F. Alouges, T. Rivière and S. Serfaty, Néel and cross-tie wall energies for planar micromagnetic configurations. ESAIM : COCV 8 (2002) 31–68. [CrossRef] [EDP Sciences]
  2. W.F. Brown, Micromagnetics. Interscience Publisher, John Willey and Sons, New York (1963).
  3. G. Carbou, Regularity for critical points of a nonlocal energy. Calc. Var. 5 (1997) 409–433. [CrossRef] [MathSciNet]
  4. G. Carbou, Thin layers in micromagnetism. Math. Models Methods Appl. Sci. 11 (2001) 1529–1546. [CrossRef] [MathSciNet] [PubMed]
  5. G. Carbou and P. Fabrie, Time average in micromagnetism. J. Differ. Equ. 147 (1998) 383–409. [CrossRef]
  6. G. Carbou and P. Fabrie, Regular solutions for Landau-Lifschitz equation in a bounded domain. Differential Integral Equations 14 (2001) 213–229. [MathSciNet]
  7. G. Carbou and P. Fabrie, Regular solutions for Landau-Lifschitz equation in R3. Commun. Appl. Anal. 5 (2001) 17–30. [MathSciNet]
  8. G. Carbou and S. Labbé, Stability for static walls in ferromagnetic nanowires. Discrete Continous Dyn. Syst. Ser. B 6 (2006) 273–290. [CrossRef]
  9. G. Carbou, S. Labbé and E. Trélat, Control of travelling walls in a ferromagnetic nanowire. Discrete Contin. Dyn. Syst. Ser. S 1 (2008) 51–59. [MathSciNet]
  10. A. DeSimone, R.V. Kohn, S. Müller and F. Otto, Magnetic microstructures – a paradigm of multiscale problems, in ICIAM 99 (Edinburgh), Oxford Univ. Press, Oxford (2000) 175–190.
  11. L. Halpern and S. Labbé, Modélisation et simulation du comportement des matériaux ferromagnétiques. Matapli 66 (2001) 70–86.
  12. T. Kapitula, Multidimensional stability of planar travelling waves. Trans. Amer. Math. Soc. 349 (1997) 257–269. [CrossRef] [MathSciNet]
  13. K. Kühn, Travelling waves with a singularity in magnetic nanowires. Commun. Partial Diff. Equ. 34 (2009) 722–764. [CrossRef]
  14. S. Labbé, Simulation numérique du comportement hyperfréquence des matériaux ferromagnétiques. Thèse de l’Université Paris 13, Paris (1998).
  15. S. Labbé and P.-Y. Bertin, Microwave polarisability of ferrite particles with non-uniform magnetization. J. Magn. Magn. Mater. 206 (1999) 93–105. [CrossRef]
  16. T. Rivière and S. Serfaty, Compactness, kinetic formulation, and entropies for a problem related to micromagnetics. Commun. Partial Diff. Equ. 28 (2003) 249–269. [CrossRef] [MathSciNet]
  17. D. Sanchez, Méthodes asymptotiques en ferromagnétisme. Thèse de l’Université Bordeaux 1, Bordeaux (2004).
  18. A. Thiaville, J.M. Garcia and J. Miltat, Domain wall dynamics in nanowires. J. Magn. Magn. Mater. 242–245 (2002) 1061–1063. [CrossRef]
  19. A. Visintin, On Landau Lifschitz equation for ferromagnetism. Japan Journal of Applied Mathematics 1 (1985) 69–84. [CrossRef] [MathSciNet]
  20. H. Wynled, Ferromagnetism, Encyclopedia of Physics XVIII/2. Springer-Verlag, Berlin (1966).