Free access
Volume 5, 2000
Page(s) 1 - 44
Published online 15 August 2002
  1. C. Bardos and U. Frisch, Finite-time regularity for bounded and unbounded ideal incompressible fluids using Hölder estimates, in Proceedings of the conference held at the university of Paris-Sud Orsay, France. Springer-Verlag, Lectures Notes in Math. 565 (1975) 1-13. [CrossRef]
  2. J.-M. Coron, Global Asymptotic Stabilization for controllable systems without drift. Math. Control Signals Systems 5 (1992) 295-312. [CrossRef] [MathSciNet]
  3. J.-M. Coron, Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels. C. R. Acad. Sci. Paris Sér. I Math. 317 (1993) 271-276.
  4. J.-M. Coron, On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl. 75 (1996) 155-188. [MathSciNet]
  5. J.-M. Coron, On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions. ESAIM Control Optim. Calc. Var. 1 (1996) 35-75. [CrossRef] [EDP Sciences]
  6. O. Glass, Exact boundary controllability of 3-D Euler equation of perfect incompressible fluids. C. R. Acad. Sci. Paris Sér. I Math. 325 (1997) 987-992.
  7. O. Glass, Contrôlabilité de l'équation d'Euler tridimensionnelle pour les fluides parfaits incompressibles, Séminaire Équations aux Dérivées Partielles, 1997-1998, École polytechnique, Centre de Mathématiques, exposé XV.
  8. P. Hermann and H. Kersten, Über die stetige Abhängigkeit der Lösung des Neumann-Problems für die Prae-Maxwellschen Gleichungen von ihren Randdaten. Arch. Math. (Basel) 36 (1981) 79-82. [CrossRef] [MathSciNet]
  9. A.V. Kazhikov, Note on the formulation of the problem of flow through a bounded region using equations of perfect fluid. PMM USSR 44 (1981) 672-674.
  10. J.-L. Lions, Are there connections between turbulence and controllability?, 9th INRIA International Conference, Antibes (June 12-15, 1990).
  11. R. Temam, Navier-Stokes equations and numerical analysis. North-Holland Pub. (1979).