Free access
Issue
ESAIM: COCV
Volume 6, 2001
Page(s) 1 - 19
DOI http://dx.doi.org/10.1051/cocv:2001101
Published online 15 August 2002
  1. E.M. Alfsen, Compact Convex Sets and Boundary Integrals. Springer-Verlag (1971).
  2. E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal. 86 (1984) 125-145. [CrossRef] [MathSciNet]
  3. H. Berliocchi and J.M. Lasry, Intégrandes normales et mesures paramétrées en calcul des variations. Bull. Soc. Math. France 101 (1973) 129-184. [MathSciNet]
  4. J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63 (1977) 337-403. [CrossRef] [MathSciNet]
  5. J.M. Ball, A version of the fundamental theorem of Young measures, in Partial Differential Equations and Continuum Models of Phase Transitions, edited by M. Rascle, D. Serre and M. Slemrod. Springer-Verlag (1989) 207-215.
  6. J.M. Ball, Sets of gradients with no rank-one connections. J. Math. Pures Appl. 69 (1990) 241-259. [MathSciNet]
  7. K. Bhattacharya, N.B. Firoozye, R.D. James and R.V. Kohn, Restrictions on Microstructures. Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 843-878. [MathSciNet]
  8. J.M. Ball and R.D. James, Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100 (1987) 13-52. [CrossRef] [MathSciNet]
  9. J.M. Ball and R.D. James, Proposed experimental tests of a theory of fine microstructures and the two-well problem. Philos. Trans. Roy. Soc. London Ser. A 338 (1992) 389-450. [CrossRef]
  10. J.M. Ball and K.-W. Zhang, Lower semicontinuity and multiple integrals and the biting lemma. Proc. Roy. Soc. Edinburgh Sect. A 114 (1990) 367-379. [MathSciNet]
  11. M. Chipot and D. Kinderlehrer, Equilibrium configurations of crystals. Arch. Rational Mech. Anal. 103 (1988) 237-277. [MathSciNet]
  12. B. Dacorogna, Direct Methods in the Calculus of Variations. Springer-Verlag (1989).
  13. B. Dacorogna and P. Marcellini, Théorème d'existence dans le cas scalaire et vectoriel pour les équations de Hamilton-Jacobi. C. R. Acad. Sci. Paris Sér. I Math. 322 (1996) 237-240.
  14. B. Dacorogna and P. Marcellini, Sur le problème de Cauchy-Dirichlet pour les systèmes d'équations non linéaires du premier ordre. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996) 599-602.
  15. B. Dacorogna and P. Marcellini, General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial case. Acta Math. 178 (1997) 1-37. [CrossRef] [MathSciNet]
  16. B. Dacorogna and P. Marcellini, Cauchy-Dirichlet problem for first order nonlinear systems. J. Funct. Anal. 152 (1998) 404-446. [CrossRef] [MathSciNet]
  17. B. Dacorogna and P. Marcellini, Implicit second order partial differential equations. Ann. Scuola. Norm. Sup. Pisa Cl. Sci. (4) 25 (1997) 299-328. [MathSciNet]
  18. J.L. Kelly, General Topology. van Nostrand (1955).
  19. D. Kinderlehrer and P. Pedregal, Characterizations of Young measures generated by gradients. Arch. Rational Mech. Anal 115 (1991) 329-365. [CrossRef] [MathSciNet]
  20. R.V. Kohn, The relaxation of a double well energy. Cont. Mech. Therm. 3 (1991) 981-1000.
  21. S.R. Lay, Convex Sets and Their Applications. John Wiley & Sons (1982).
  22. C.B. Morrey Jr., Multiple integrals in the calculus of variations. Springer (1966).
  23. S. Müller and V. Sverák, Attainment results for the two-well problem by convex integration. Preprint (1993).
  24. Yu.G. Reshetnak, Liouville's theorem on conformal mappings under minimal regularity assumptions. Siberian Math. J. 8 (1967) 631-653.
  25. R.T. Rockafellar, Convex Analysis. Princeton University Press (1970).
  26. W. Rudin, Functional Analysis. McGraw-Hill (1973).
  27. V. Sverák, On regularity for the Monge-Ampère equations. Preprint.
  28. V. Sverák, New examples of quasiconvex functions. Arch. Rational Mech. Anal. 119 (1992) 293-330. [CrossRef] [MathSciNet]
  29. V. Sverák, On the problem of two wells, in Microstructure and phase transitions, edited by D. Kinderlehrer, R.D. James, M. Luskin and J. Ericksen. Springer, IMA J. Appl. Math. 54 (1993) 183-189.
  30. V. Sverák, On Tartar's conjecture. Ann. Inst. H. Poincaré 10 (1993) 405-412.
  31. L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, IV, edited by R.J. Knops. Pitman (1979).
  32. K.-W. Zhang, A construction of quasiconvex functions with linear growth at infinity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) XIX (1992) 313-326.
  33. K.-W. Zhang, On connected subsets of Formula without rank-one connections. Proc. Roy. Soc. Edinburgh Sect. A 127 (1997) 207-216. [MathSciNet]
  34. K.-W. Zhang, On various semiconvex hulls in the calculus of variations. Calc. Var. Partial Differential Equations 6 (1998) 143-160. [CrossRef] [MathSciNet]
  35. K.-W. Zhang, On the structure of quasiconvex hulls. Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998) 663-686. [CrossRef] [MathSciNet]