Free access
Issue
ESAIM: COCV
Volume 6, 2001
Page(s) 629 - 647
DOI http://dx.doi.org/10.1051/cocv:2001126
Published online 15 August 2002
  1. A. Bayliss, M. Gunzburger and E. Turkel, Boundary conditions for the numerical solution of elliptic equations in exterior domains. SIAM J. Appl. Math. 42 (1982).
  2. W.F. Brown, Micromagnetics. Interscience Publishers, Wiley & Sons, New-York (1963).
  3. X. Brunotte, G. Meunier and J.-F. Imhoff, Finite element modeling of unbounded problems using transformations: A rigorous, powerful and easy solution. IEEE Trans. Mag. 28 (1992).
  4. R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques, Vol. 6. Masson, Paris (1988).
  5. D. Givoli, Non-reflecting boundary conditions. J. Comp. Phys. 94 (1991) 1-29. [CrossRef] [MathSciNet]
  6. C.I. Goldstein, The finite element method with nonuniform mesh sizes for unbounded domains. J. Math. Comput. 36 (1981) 387-404. [CrossRef]
  7. J.D. Jackson, Classical Electrodynamics. Wiley and Sons, Formula edition (1975).
  8. S.A. Nazarov and M. Specovius-Neugebauer, Approximation of exterior problems. Optimal conditions for the Laplacian. Analysis 16 (1996) 305-324. [MathSciNet]
  9. T. Shreffl, Numerische Simulation von Ummagnetisierungsvorgängen in hartmagnetischen Materialen, Ph.D. Thesis. Technische Universität Wien (1993).
  10. R. Fisher, T. Shreffl, H. Kronmüller and J. Fidler, Phase distribution and computed magnetic properties of high-remanent composite magnets. J. Magnetism and Magnetic Materials 150 (1995) 329-344. [CrossRef]
  11. P.P. Silvester, D.A. Lowther, C.J. Carpenter and E.A. Wyatt, Exterior finite elements for 2-dimensional field problems with open boundaries. Proc. IEE 124 (1977).
  12. L.A. Ying, Infinite Elements Method. Peking University Press.