Free access
Volume 7, 2002
Page(s) 471 - 493
Published online 15 September 2002
  1. C.I. Byrnes and J.C. Willems, Adaptive stabilization of multivariable linear systems, in Proc. 23rd Conf. on Decision and Control. Las Vegas (1984) 1574-1577.
  2. A. Ilchmann, E.P. Ryan and C.J. Sangwin, Systems of controlled functional differential equations and adaptive tracking. SIAM J. Control Optim. 40 (2002) 1746-1764. [CrossRef] [MathSciNet]
  3. H. Logemann and A.D. Mawby, Low-gain integral control of infinite dimensional regular linear systems subject to input hysteresis, in Advances in Mathematical Systems Theory, edited by F. Colonius, U. Helmke, D. Prätzel-Wolters and F. Wirth. Birkhäuser Verlag, Boston, Basel, Berlin (2000) 255-293.
  4. D.E. Miller and E.J. Davison, An adaptive controller which provides an arbitrarily good transient and steady-state response. IEEE Trans. Automat. Control 36 (1991) 68-81. [CrossRef] [MathSciNet]
  5. E.P. Ryan and C.J. Sangwin, Controlled functional differential equations and adaptive stabilization. Int. J. Control 74 (2001) 77-90. [CrossRef]
  6. E.D. Sontag, Smooth stabilization implies coprime factorization. IEEE Trans. Automat. Control 34 (1989) 435-443. [CrossRef] [MathSciNet]
  7. C. Sparrow, The Lorenz equations: Bifurcations, chaos and strange attractors. Springer-Verlag, New York (1982).
  8. G. Weiss, Transfer functions of regular linear systems, Part 1: Characterization of regularity. Trans. Amer. Math. Soc. 342 (1994) 827-854. [CrossRef] [MathSciNet]