Free access
Issue
ESAIM: COCV
Volume 7, 2002
Page(s) 157 - 178
DOI http://dx.doi.org/10.1051/cocv:2002007
Published online 15 September 2002
  1. R. Adams, Sobolev Spaces. Academic Press, New York (1975).
  2. J. Baillieul and M. Levi, Rotational elastic dynamics. Physica D 27 (1987) 43-62. [CrossRef] [MathSciNet]
  3. J. Baillieul and M. Levi, Constrained relative motions in rotational mechanics. Arch. Rational Mech. Anal. 115 (1991) 101-135. [CrossRef] [MathSciNet]
  4. S.K. Biswas and N.U. Ahmed, Optimal control of large space structures governed by a coupled system of ordinary and partial differential equations. Math. Control Signals Systems 2 (1989) 1-18. [CrossRef] [MathSciNet]
  5. B. Chentouf and J.F. Couchouron, Nonlinear feedback stabilization of a rotating body-beam without damping. ESAIM: COCV 4 (1999) 515-535. [CrossRef] [EDP Sciences]
  6. J.-M. Coron and B. d'Andréa-Novel, Stabilization of a rotating body beam without damping. IEEE Trans. Automat. Control 43 (1998) 608-618. [CrossRef] [MathSciNet]
  7. C.J. Damaren and G.M.T. D'Eleuterio, Optimal control of large space structures using distributed gyricity. J. Guidance Control Dynam. 12 (1989) 723-731. [CrossRef] [MathSciNet]
  8. I. Ekeland and R. Temam, Convex Analysis and Variational Problems. North-Holland Publishing Company, Amsterdam (1976).
  9. H. Laousy, C.Z. Xu and G. Sallet, Boundary feedback stabilization of a rotating body-beam system. IEEE Trans. Automat. Control 41 (1996) 241-245. [CrossRef] [MathSciNet]
  10. J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, Berlin (1971).
  11. J.L. Lions and E. Magenes, Non-homogeneous Boundary value Problems and Applications, Vol. I. Springer-Verlag, Berlin, Heidelberg, New York (1972).
  12. A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983).
  13. J. Simon, Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl. (4) CXLVI (1987) 65-96.
  14. R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, 2nd Ed. Springer-Verlag, New York (1997).
  15. C.Z. Xu and J. Baillieul, Stabilizability and stabilization of a rotating body-beam system with torque control. IEEE Trans. Automat. Control 38 (1993) 1754-1765. [CrossRef] [MathSciNet]