Free access
Volume 7, 2002
Page(s) 223 - 237
Published online 15 September 2002
  1. L. Ambrosio, A compactness theorem for a special class of functions of bounded variation. Boll. Un. Mat. Ital. 3-B (1989) 857-881.
  2. L. Ambrosio, I. Fonseca, P. Marcellini and L. Tartar, On a volume constrained variational problem. Arch. Rat. Mech. Anal. 149 (1999) 23-47. [CrossRef] [MathSciNet]
  3. N. Aguilera, H.W. Alt and L.A. Caffarelli, An optimization problem with volume constraint. SIAM J. Control Optim. 24 (1986) 191-198. [CrossRef] [MathSciNet]
  4. H.W. Alt and L.A. Caffarelli, Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325 (1981) 105-144. [MathSciNet]
  5. A. Braides and V. Chiadò-Piat, Integral representation results for functionals defined on Formula . J. Math. Pures Appl. 75 (1996) 595-626.
  6. G. Congedo and L. Tamanini, On the existence of solutions to a problem in multidimensional segmentation. Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1991) 175-195.
  7. E. De Giorgi and L. Ambrosio, Un nuovo tipo di funzionale del calcolo delle variazioni. Atti Accad. Naz. Lincei 82 (1988) 199-210.
  8. G. Dal Maso, An Introduction to Γ-convergence. Birkhäuser (1993).
  9. L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, Stud. Adv. Math. (1992).
  10. E. Giusti, Minimal Surfaces and Functions of Bounded Variation. Birkhäuser (1984).
  11. M.E. Gurtin, D. Polignone and J. Vinals, Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci. 6 (1996) 815-831. [CrossRef] [MathSciNet]
  12. P. Tilli, On a constrained variational problem with an arbitrary number of free boundaries. Interf. Free Boundaries 2 (2000) 201-212. [CrossRef] [MathSciNet]
  13. W. Ziemer, Weakly Differentiable Functions. Springer-Verlag (1989).