Free access
Issue
ESAIM: COCV
Volume 8, 2002
A tribute to JL Lions
Page(s) 273 - 285
DOI http://dx.doi.org/10.1051/cocv:2002021
Published online 15 August 2002
  1. L. Brandolese, On the Localization of Symmetric and Asymmetric Solutions of the Navier-Stokes Equations dans Formula . C. R. Acad. Sci. Paris Sér. I Math 332 (2001) 125-130.
  2. Y. Dobrokhotov and A.I. Shafarevich, Some integral identities and remarks on the decay at infinity of solutions of the Navier-Stokes Equations. Russian J. Math. Phys. 2 (1994) 133-135. [MathSciNet]
  3. T. Gallay and C.E. Wayne, Long-time asymptotics of the Navier-Stokes and vorticity equations on Formula . Preprint. Univ. Orsay (2001).
  4. C. He and Z. Xin, On the decay properties of Solutions to the nonstationary Navier-Stokes Equations in Formula . Proc. Roy. Soc. Edinburgh Sect. A 131 (2001) 597-619. [CrossRef] [MathSciNet]
  5. T. Kato, Strong Lp-Solutions of the Navier-Stokes Equations in Formula , with applications to weak solutions. Math. Z. 187 (1984) 471-480. [CrossRef] [MathSciNet]
  6. O. Ladyzenskaija, The mathematical theory of viscous incompressible flow. Gordon and Breach, New York, English translation, Second Edition (1969).
  7. T. Miyakawa, On space time decay properties of nonstationary incompressible Navier-Stokes flows in Formula . Funkcial. Ekvac. 32 (2000) 541-557.
  8. S. Takahashi, A wheighted equation approach to decay rate estimates for the Navier-Stokes equations. Nonlinear Anal. 37 (1999) 751-789. [CrossRef] [MathSciNet]