Free access
Issue
ESAIM: COCV
Volume 8, 2002
A tribute to JL Lions
Page(s) 467 - 487
DOI http://dx.doi.org/10.1051/cocv:2002056
Published online 15 August 2002
  1. A. Haraux, Systèmes dynamiques dissipatifs et applications. Masson, Paris, Milan, Barcelona, Rome (1991).
  2. V.V. Chepyzhov and M.I. Vishik, Attractors of non-autonomous dynamical systems and their dimension. J. Math. Pures Appl. 73 (1994) 279-333. [MathSciNet]
  3. V.V. Chepyzhov and M.I. Vishik, Attractors for equations of mathematical physics. AMS, Providence, Rhode Island (2002).
  4. J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod Gauthier-Villars, Paris (1969).
  5. O.A. Ladyzhenskaya,The mathematical theory of viscous incompressible flow. Moscow, Nauka (1970). English transl.: Gordon and Breach, New York (1969).
  6. R. Temam, Infinite-dimensional dynamical systems in mechanics and physics. New York, Springer-Verlag, Appl. Math. Ser. 68 (1988), 2nd Ed. 1997.
  7. A.V. Babin and M.I. Vishik,Attractors of evolution equations. Nauka, Moscow (1989). English transl.: North Holland (1992).
  8. V.V. Chepyzhov and A.A. Ilyin, On the fractal dimension of invariant sets; applications to Navier-Stokes equations (to appear).
  9. M.I. Vishik and V.V. Chepyzhov, Averaging of trajectory attractors of evolution equations with rapidly oscillating terms. Mat. Sbornik 192 (2001) 16-53. English transl.: Sbornik: Mathematics 192 (2001).
  10. V.V. Chepyzhov and M.I. Vishik, Trajectory attractors for 2D Navier-Stokes systems and some generalizations. Topol. Meth. Nonl. Anal., J.Juliusz Schauder Center 8 (1996) 217-243.
  11. J.W.S. Kassels, An introduction to Diophantine approximations. Cambridge University Press (1957).
  12. B. Fiedler and M.I. Vishik, Quantitative homogenization of global attractors for reaction-diffusion systems with rapidly oscillating terms. Preprint (2000).