Free access
Volume 11, Number 1, January 2005
Page(s) 102 - 121
Published online 15 December 2004
  1. A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structure. North-Holland (1978).
  2. B. Burgdorfer, The influence of the molecular mean free path on the performance of hydrodynamic gas lubricated bearings. ASME J. basic Engineer. 81 (1959) 99–100.
  3. M. Chipot and M. Luskin, Existence and uniqueness of solutions to the compressible Reynolds lubrication equation. SIAM J. Math. Anal. 17 (1986) 1390–1399. [CrossRef] [MathSciNet]
  4. J.I. Diaz and J.I. Tello, On a problem lacking a classical solution in lubrication theory, in Actas del XV-CEDYA, Vigo II (1997) 429–434.
  5. L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. Stud. Adv. Math. CRC Press (1992).
  6. D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. Springer-Verlag, Berlin, second edition (1983).
  7. B.S. Grigor'ev, S.V. Lupulyak and Yu.K. Shinder, Solvability of the reynolds equation of gas lubrication. J. Math. Sci. 106 (2001) 2925–2928. [CrossRef] [MathSciNet]
  8. M. Jai, Existence and uniqueness of solutions of the parabolic nonlinear compressible Reynolds lubrication equation. Nonlinear Anal. 43 (2001) 655–682. [CrossRef] [MathSciNet]
  9. D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1980).
  10. L. Rayleigh, Notes on the Theory of Lubrication. Phylosophical Magazine 35 (1918) 1–12.
  11. M.P. Robert, Optimization of self-acting gas bearings for maximum static siffness. ASME J. Appl. Mech. 57 (1990) 758–761. [CrossRef]
  12. S.M. Rodhe and G.T. McAllister, On the optimization of fluid film bearings. Proc. Roy. Soc. London A 351 (1976) 481–497.
  13. J. I. Tello, Regularity of solutions to a lubrication problem with discontinuous separation data. Nonlinear Anal. 53 (2003) 1167–1177. [CrossRef] [MathSciNet]