Free access
Volume 11, Number 2, April 2005
Page(s) 204 - 218
Published online 15 March 2005
  1. M. Abdelouhab, J.L. Bona, M. Felland and J.-C. Saut, Nonlocal models for nonlinear, dispersive waves. Physica D 40 (1989) 360–392. [CrossRef] [MathSciNet]
  2. M.J. Ablowitz and A.S. Fokas, The inverse scattering transform for the Benjamin-Ono equation-a pivot to multidimensional problems. Stud. Appl. Math. 68 (1983) 1–10. [MathSciNet]
  3. T.B. Benjamin, Internal waves of permanent form in fluids of great depth. J. Fluid Mech. 29 (1967) 559–592. [CrossRef]
  4. J. Bona and R. Winther, The Korteweg-de Vries equation, posed in a quarter-plane. SIAM J. Math. Anal. 14 (1983) 1056–1106. [CrossRef] [MathSciNet]
  5. J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Geom. Funct. Anal. 3 (1993) 107–156, 209–262. [CrossRef] [MathSciNet]
  6. K.M. Case, Benjamin-Ono related equations and their solutions. Proc. Nat. Acad. Sci. USA 76 (1979) 1–3. [CrossRef]
  7. T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equation. Oxford Sci. Publ. (1998).
  8. J. Colliander and C.E. Kenig, The generalized Korteweg-de Vries equation on the half line. Comm. Partial Differential Equations 27 (2002) 2187–2266. [CrossRef] [MathSciNet]
  9. K.D. Danov and M.S. Ruderman, Nonlinear waves on shallow water in the presence of a horizontal magnetic field. Fluid Dynamics 18 (1983) 751–756. [CrossRef] [MathSciNet]
  10. A.E. Ingham, A further note on trigonometrical inequalities. Proc. Cambridge Philos. Soc. 46 (1950) 535–537. [CrossRef] [MathSciNet]
  11. R. Iorio, On the Cauchy problem for the Benjamin-Ono equation. Comm. Partial Differentiel Equations 11 (1986) 1031–1081. [CrossRef]
  12. Y. Ishimori, Solitons in a one-dimensional Lennard/Mhy Jones lattice. Progr. Theoret. Phys. 68 (1982) 402–410. [CrossRef] [MathSciNet]
  13. C.E. Kenig and K. Koenig, On the local well-posedness of the Benjamin-Ono and modified Benjamin-Ono equations. Math. Res. Lett. 10 (2003) 879–895. [MathSciNet]
  14. C.E. Kenig, G. Ponce and L. Vega, A bilinear estimate with application to the KdV equation. J. Amer. Math Soc. 9 (1996) 573–603. [CrossRef] [MathSciNet]
  15. H. Koch and N. Tzvetkov, On the local well-posedness of the Benjamin-Ono equation in Formula . Int. Math. Res. Not. 26 (2003) 1449–1464. [CrossRef]
  16. Y. Matsuno and D.J. Kaup, Initial value problem of the linearized Benjamin-Ono equation and its applications. J. Math. Phys. 38 (1997) 5198–5224. [CrossRef] [MathSciNet]
  17. S. Micu, On the controllability of the linearized Benjamin-Bona-Mahony equation. SIAM J. Control Optim. 39 (2001) 1677–1696. [CrossRef] [MathSciNet]
  18. H. Ono, Algebraic solitary waves in stratified fluids. J. Phys. Soc. Japan 39 (1975) 1082–1091. [CrossRef] [MathSciNet]
  19. A. Pazy. Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York, Appl. Math. Sci. 44 (1983).
  20. G. Perla-Menzala, F. Vasconcellos and E. Zuazua. Stabilization of the Korteweg-de Vries equation with localized damping. Quart. Appl. Math. 60 (2002) 111–129. [MathSciNet]
  21. G. Ponce, On the global well-posedness of the Benjamin-Ono equation. Diff. Integral Equations 4 (1991) 527–542.
  22. L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain. ESAIM: COCV 2 (1997) 33–55. [CrossRef] [EDP Sciences]
  23. D.L. Russell and B.-Y. Zhang, Controllability and stabilizability of the third order linear dispersion equation on a periodic domain. SIAM J. Cont. Optim. 31 (1993) 659–676. [CrossRef] [MathSciNet]
  24. D.L. Russell and B.-Y. Zhang, Exact controllability and stabilizability of the Korteweg-de Vries equation. Trans. Amer. Math. Soc. 348 (1996) 3643–3672. [CrossRef] [MathSciNet]
  25. T. Tao, Global well-posedness of the Benjamin-Ono equation in Formula , preprint (2003).