Free access
Issue
ESAIM: COCV
Volume 11, Number 2, April 2005
Page(s) 180 - 203
DOI http://dx.doi.org/10.1051/cocv:2005006
Published online 15 March 2005
  1. G. Avalos, I. Lasiecka, Exact controllability of structural acoustic interactions. J. Math. Pures Appl. 82 (2003) 1047–1073. [CrossRef] [MathSciNet]
  2. V. Barbu, T. Precupanu, Convexity and Optimization in Banach Spaces, 2nd ed., D. Reidel, Dordrecht (1986).
  3. A. Bensoussan, G. Da Prato, M.C. Delfour and S.K. Mitter, Representation and Control of Infinite Dimensional Systems. Birkhäuser, Boston 1 (1992).
  4. C. Conca, J. Planchard, B. Thomas and M. Vanninathan, Problèmes mathématiques en couplage fluide-structure. Eyrolles, Paris (1994).
  5. C. Conca, J. Planchard and M. Vanninathan, Fluids and periodic structures. Masson and J. Wiley, Paris (1995).
  6. L. Cot, J.-P. Raymond and J. Vancostenoble, Exact controllability of an aeroacoustic model. In preparation.
  7. R. Dautray and J.-L. Lions, Analyse Mathématique et Calcul Scientifique. Masson, Paris (1987).
  8. P. Destuynder and E. Gout d'Henin, Existence and uniqueness of a solution to an aeroacoustic model. Chin. Ann. Math. 23B (2002) 11–24. [CrossRef]
  9. E. Gout d'Henin, Ondes de Stoneley en interaction fluide-structure. Ph.D. Thesis, Université de Poitiers (2002).
  10. J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Masson, Paris (1988).
  11. S. Micu and E. Zuazua, Boundary controllability of a linear hybrid system arising in the control of noise. SIAM J. Control Optim. 35 (1997) 531–555.
  12. J.J. Moreau, Bounded variation in time, in Topics in Nonsmooth Mechanics, J.J. Moreau, P.D. Panagiotopoulos, G. Strang Eds. Birkhäuser, Boston (1988) 1–74.