Free access
Issue
ESAIM: COCV
Volume 11, Number 4, October 2005
Page(s) 595 - 613
DOI http://dx.doi.org/10.1051/cocv:2005022
Published online 15 September 2005
  1. S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I. Comm. Pure Appl. Math. 12 (1959) 623–727. [CrossRef] [MathSciNet]
  2. M. Beckmann, A continuous model of transportation. Econometrica 20 (1952) 643–660. [CrossRef] [MathSciNet]
  3. M. Beckmann and T. Puu, Spatial Economics: Density, Potential and Flow. North-Holland, Amsterdam (1985).
  4. H. Brezis, Analyse Fonctionnelle. Masson Editeur, Paris (1983).
  5. G. Buttazzo and F. Santambrogio, A model for the optimal planning of an urban area. Preprint available at cvgmt.sns.it (2003). To appear in SIAM J. Math. Anal.
  6. G. Buttazzo and E. Stepanov, Optimal transportation networks as free Dirichlet regions for the Monge-Kantorovich problem. Ann. Sc. Norm. Super. Pisa Cl. Sci. 2 (2003) 631–678. [MathSciNet]
  7. L. De Pascale and A. Pratelli, Regularity properties for Monge transport density and for solutions of some shape optimization problem. Calc. Var. Partial Differ. Equ. 14 (2002) 249–274. [CrossRef]
  8. D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin (1977).
  9. R.J. McCann, A convexity principle for interacting gases. Adv. Math. 128 (1997) 153–159. [CrossRef] [MathSciNet]
  10. F. Santambrogio, Misure ottime per costi di trasporto e funzionali locali (in italian), Laurea Thesis, Università di Pisa, advisor: G. Buttazzo, available at www.unipi.it/etd and cvgmt.sns.it (2003).