 S.A. Avdonin and S.A. Ivanov, Families of Exponentials: The Method of Moments in Controllability Problems for Distributed Parameter Systems. Cambridge University Press, Cambridge, UK (1995).
 G.D. Birkhoff and R.E. Langer, The boundary problems and developments associated with a system of ordinary linear differential equations of the first order. Proc. American Academy Arts Sci. 58 (1923) 49–128.
 R.F. Curtain, The SalamonWeiss class of wellposed infinite dimensional linear systems: a survey. IMA J. Math. Control Inform. 14 (1997) 207–223. [CrossRef] [MathSciNet]
 R.F. Curtain, Linear operator inequalities for strongly stable weakly regular linear systems. Math. Control Signals Systems 14 (2001) 299–337. [CrossRef]
 R.H. Fabiano and S.W. Hansen, Modeling and analysis of a threelayer damped sandwich beam. Discrete Contin. Dynam. Syst., Added Volume (2001) 143–155.
 B.Z. Guo, Riesz basis approach to the stabilization of a flexible beam with a tip mass. SIAM J. Control Optim. 39 (2001) 1736–1747.
 B.Z. Guo and Y.H. Luo, Controllability and stability of a second order hyperbolic system with collocated sensor/actuator. Syst. Control Lett. 46 (2002) 45–65. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
 S.W. Hansen and R. Spies, Structural damping in a laminated beams due to interfacial slip. J. Sound Vibration 204 (1997) 183–202. [CrossRef]
 S.W. Hansen and I. Lasiecla, Analyticity, hyperbolicity and uniform stability of semigroupsm arising in models of composite beams. Math. Models Methods Appl. Sci. 10 (2000) 555–580. [CrossRef] [MathSciNet]
 T. Kato, Perturbation theory of linear Operators. Springer, Berlin (1976).
 V. Komornik, Exact Controllability and Stabilization: the Multiplier Method. John Wiley and Sons, Ltd., Chichester (1994).
 A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. SpringerVerlag, New York (1983).
 D.L. Russell and B.Y. Zhang, Controllability and stabilizability of the thirdorder linear dispersion equation on a periodic domain. SIAM J. Control Optim. 31 (1993) 659–676. [CrossRef] [MathSciNet]
 D.L. Russell and B.Y. Zhang, Exact controllability and stabilizability of the Kortewegde Vries equation. Trans. Amer. Math. Soc. 348 (1996) 3643–3672. [CrossRef] [MathSciNet]
 C. Tretter, Spectral problems for systems of differential equations with polynomial boundary conditions. Math. Nachr. 214 (2000) 129–172. [CrossRef] [MathSciNet]
 C. Tretter, Boundary eigenvalue problems for differential equations with polynomial boundary conditions. J. Diff. Equ. 170 (2001) 408–471. [CrossRef]
 G. Weiss, Transfer functions of regular linear systems I: Characterizations of regularity. Trans. Amer. Math. Soc. 342 (1994) 827–854. [CrossRef] [MathSciNet]
 R.M. Young, An Introduction to Nonharmonic Fourier Series. Academic Press, Inc., London (2001).
Free access
Issue 
ESAIM: COCV
Volume 12, Number 1, January 2006



Page(s)  12  34  
DOI  http://dx.doi.org/10.1051/cocv:2005030  
Published online  15 December 2005 