Free access
Volume 12, Number 1, January 2006
Page(s) 52 - 63
Published online 15 December 2005
  1. G. Alberti, G. Bouchitté and P. Seppecher, Un résultat de perturbations singulières avec la norme Formula . C. R. Acad. Sci. Paris Sér. I Math. 319 (1994) 333–338.
  2. G. Alberti, G. Bouchitté and P. Seppecher, Phase transition with the line-tension effect. Arch. Rational Mech. Anal. 144 (1998) 1–46. [CrossRef] [MathSciNet]
  3. A. Garroni and S. Müller, A variational model for dislocations in the line-tension limit. Preprint 76, Max Planck Institute for Mathematics in the Sciences (2004).
  4. A.M. Garsia and E. Rodemich, Monotonicity of certain functionals under rearrangement. Ann. Inst. Fourier (Grenoble) 24 (1974) VI 67–116.
  5. R.V. Kohn and V.V. Slastikov, Another thin-film limit of micromagnetics. Arch. Rat. Mech. Anal., to appear.
  6. M. Kurzke, Analysis of boundary vortices in thin magnetic films. Ph.D. Thesis, Universität Leipzig (2004).
  7. E.H. Lieb and M. Loss, Analysis, second edition, Graduate Studies in Mathematics 14 (2001).
  8. L. Modica, The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98 (1987) 123–142. [CrossRef] [MathSciNet]
  9. S. Müller, Variational models for microstructure and phase transitions, in Calculus of variations and geometric evolution problems (Cetraro, 1996), Springer, Berlin. Lect. Notes Math. 1713 (1999) 85–210. [CrossRef]
  10. J.C.C. Nitsche, Vorlesungen über Minimalflächen. Grundlehren der mathematischen Wissenschaften 199 (1975).
  11. P. Pedregal, Parametrized measures and variational principles, Progre. Nonlinear Differ. Equ. Appl. 30 (1997).
  12. C. Pommerenke, Boundary behaviour of conformal maps. Grundlehren der mathematischen Wissenschaften 299 (1992).
  13. M.E. Taylor, Partial differential equations. III, Appl. Math. Sci. 117 (1997).
  14. J.F. Toland, Stokes waves in Hardy spaces and as distributions. J. Math. Pures Appl.ic> 79 (2000) 901–917. [CrossRef] [MathSciNet]